Prosjekt	Kammen gang- og sykkelbru - Åndalsnes
Fase	Teknisk godkjenning
Tittel	Beregningsrapport
Oppdragsgiver	Rauma kommune
Dato	28-02-2023
Prosjekt- / Rapport ID	21130-R02

Sammendrag

Dette dokumentet er beregningsrapport for konstruksjonssikkerhet for Kammen gang- og sykkelbru i Åndalsnes (Rauma).

Rapporten leses i sammenheng med 21130-R01 Prosjekteringsforutsetninger og de tilhørende vedlegg.

04	31-01-24	Kommentarer fra BN innarbeidet	92	FA	FI	во
03	12-04-23	Avvik fra UK innarbeidet	89	JB	SA	во
02	28-02-23	Kommentarer fra BN innarbeidet	89	JB	SA	во
01	05-09-22	Rapport oversatt til norsk	67	FA	во	во
00	07-04-22	First submission	58	JB	SA	во
REVISJON	DATO	BESKRIVELSE	SIDER	UTF.	KONTR.	GODKJ.

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

INNHOLDSFORTEGNELSE

1	IN	ITRODUKSJON	5
	1.1	Beskrivelse av brua	. 5
	1.2	Formål og omfang av rapporten	7
2	ST	TATISK MODELL	7
3	A	NALYSE – GLOBALMODELL	9
	3.1	Aksesystemer	9
4	LA	ASTER OG LASTKOMBINASJONER	9
5	Gl	LOBAL OPPFØRSEL	9
6	RE	ESULTATER FRA FEM	9
7	KA	APASITETSKONTROLL STÅL	9
8	LA	ANDKAR 1	.0
8	3.1	Jekker	LO
9	BF	RUUTSTYR	.0
9	9.1 9.1 9.1	Lager og fuger 1.1 Lagerkrefter 1.2 Bevegelser	LO 11 12
ļ	Э.2	Lagre	12
(9.3	Fuger	13
10) VE	EDLEGG 1 – HÅNDBEREGNINGER 1	.4
	10.1	Vindlaster	14
	10.2	Sjekk av peler	17
11	. VE	EDLEGG 2 – GLOBAL FEM MODELL, BESKRIVELSE 1	.8
	11.1	Geometry	18

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Rev	isjon	Dato	Utf.	Kontr.	Godkj.
0)4	30-01-2024	FA	FI	BO
11.2	Analysis	method			
11.3	Material	s			
11.3.	1 Structu	ıral steel			
11.3.2	2 Concre	te			
11.4	Sections				
11.4.:	1 Steel ci	ross sections			
11.4.2	2 Plate c	ross sections			
11.5	Offsets				
11.6	Releases	5			
12 VED	LEGG 3 -	- FEM – LASTER	PÅFØRT I MODEI	_LEN	
12.1	Permane	ent loads			
12.1.	1 Self-we	eight (DEAD)			
12.1.2	2 Superir	nposed dead load (S	DL)		
12.2	Variable	loads – Wind			
12.3	Variable	loads – Temperatu	ıre		
12.4	Variable	loads – Snow			
12.5	Variable	loads – Friction for	ces at sliding beari	ngs	
12.6	Variable	loads – Traffic load	ls		
12.6.1	1 Distrib	uted loads			
12.6.2	2 Concer	ntrated loads: Service	e vehicle		
40.7					
12.7	Imperfe	ction			
12.8	Dynamic	load			
12.9	Load cor	nbinations			
12.9.	1 Genera	al design combination	าร		
12.9.2	2 Second	l order analysis com	pinations		
13 VED	LEGG 4 -	- GLOBAL OPPFØ	ØRSEL		50
13.1	Global st	tability			
13.2	Modal a	nalysis and vibratio	n		

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Rev	/isjon	Dato	Utf.	Kontr.	Godkj.
	04	30-01-2024	FA	FI	ВО
14 VED	LEGG 5 -	- FEM RESULTA	ΓER		54
14.1	Forces				54
14.2	Reactior	าร			57
15 VED	LEGG 6 -	– STEEL DESIGN	VERIFICATIONS		59
15.1	Frame d	esign			59
15.1.	1 Ultima	te Limit State verific	ations		59
15.2	Servicea	bility limit state ve	rifications		66
15.2.	1 Displac	cements			
15.2.	2 Stress	limits			
15.3	Joint des	sign			69
15.4	Bottom	steel plate			77
16 VED	LEGG 7 -	- CONCRETE DE	SIGN VERIFICATIO	ONS	79
16.1	Abutme	nt wall			79
16.1.	1 Strut a	nd tie model			80
16.1.	2 Bearing	g local reinforcemer	ıt		
16.1.	3 Jacking	g point local reinforc	ement		
16.2	Abutme	nt wings			85
16.3	Footing.				
16.3.	1 Minim	um reinforcement			88
16.3.	2 Pile ca	ps			89
16.4	Transitic	on slab and corbel			90
17 VED	LEGG 8 -	- REACTION FOR	R GEO DESIGN		

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

1 INTRODUKSJON

1.1 BESKRIVELSE AV BRUA

Nye Kammen bru skal erstatte den gamle brua som fikk store skader etter en ulykke. For å minimere grensesnittet mot vei og jernbane som passerer under, skal brua utføres med ett spenn.

Konstruksjonen består av et stålfagverk med en vertikal kurve som gir tilstrekkelig klaring, og samtidig skaper et konsept med visuell kontinuitet. Dekket utføres som en kontinuerlig 8mm plate som spenner i bruas lengderetning mellom horisontale bjelker c/c 0,6m. Staver og gurter RHS-stålprofiler (HUP) som sveises sammen med buttsveis (full gjennomsveising).

Den foreslåtte brukonstruksjonen er vist nedenfor med oppriss, plan og typisk tverrsnitt.

Figur 1-1: Oppriss

Figur 1-2: Plan

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Figur 1-3: Typisk snitt

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

1.2 FORMÅL OG OMFANG AV RAPPORTEN

Formålet med denne rapporten er å beskrive analyseprosedyren som er brukt for å prosjektere den nye Kammen gangbro, samt presentere kapasitetskontrollene som er utført basert på denne analysen.

Prosjekteringsforutsetninger og referanse dokumenter:

- 1. 21130 Kammen bru R01 Prosjekteringsforutsetninger (07-04-2022).
- 2. Designers' Guide to EN 1991-1-4 Eurocode 1_Actions on Structures, General Actions_Wind Actions. N Cook.
- 3. 22WP004-GEW001-10-R-001-01-00A_Kammen Bru Geotechnical Works, Geotechnical assessment.
- 4. EUR 23984 EN, Design of lightweight footbridges for human induces vibrations.

2 STATISK MODELL

Brua har kun 1 spenn og er fastholdt i lengderetning i akse 2. Hele overbygg er en stålkonstruksjon som er koblet til betonglandkar ved hjelp av to lagre og fuge i hver akse. Fastholdning i tverretning skjer kun på to lagre, en per landkar. Dette er for å minimere tvang og krefter mot kvikkleir. Landkarene er store for å kompensere horisontale krefter og unngå strekk i pelene.

Figur 2-1: Lagerplan

Gulv blir modellert som en plate slik at overflatelaster blir påført selve gulvplater. Gulvplate anses til å ikke være innspent i kantente og eksentrisitet i forhold til bjelkene neglisjeres. Punktlaster blir påført bjelker som er mest konservativt uansett. Vindlaster for trau blir påført undergurter og resten blir påført staver, for detaljer, se prosjektforutsetninger.

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Figur 2-2: Ingen ledd i retninger bjelker får krefter i

I tverretning blir alle bjelkene innspent. I praksis vil de være krefter på grunn av vind som må tas gjennom moment. Derfor blir det feil å modellere stavene som leddet. Dimensjonering vil ta hensyn til det. Det er uansett ikke tillatt av Eurokode å ikke ta hensyn til moment ved tverrlaster.

I lengderetning eller i fagverkets plan, vil eksterne effekter tas opp gjennom aksialkrefter og moment i overgurt/undergurt. Derfor anses stavene i fagverket til å være leddet. Dette gjelder også vindfagverk. Dette er iht. NS-EN 1993-1-8 Tabell 5.3.

Figur 2-4: Eksentrisiteter ved overgurter

Eksentrisiteter ved undergurter er iht. NS-EN 1993-1-8 5.1.5 (5) og derfor ikke tatt hensyn til i beregningene. Eksentrisiteter ved overgurter er blitt tatt hensyn til.

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

3 ANALYSE – GLOBALMODELL

Analyse av brua under de forskjellige lastvirkningene en utført ved modellering av ulike globale og lokale FE-modeller, støttet av håndberegninger (se Vedlegg 1) der det er nødvendig. Den globale modellen gir grunnlaget for videre kontroller og beregninger. Derfor presenteres den først.

For fullstendig beskrivelser av Finite Element Modellene (FEM) se vedlegg 2.

3.1 AKSESYSTEMER

Det benyttes forskjellige aksesystemer som oppsummeres her:

Retning (vei)	Analysemodell	Reaksjoner	Nodekrefter
Lengderetning	Х	H long.	1
Tverretning	Y	H trans.	2
Vertikalt	Z	V	3

4 LASTER OG LASTKOMBINASJONER

Påførte laster er oppsummert i vedlegg 3.

5 GLOBAL OPPFØRSEL

Beregningen som ble utført viste at broen har nok kapasitet mot knekking og andre globale bruddmekanismer. Den detaljerte beskrivelsen av broens globale oppførsel er beskrevet i Vedlegg 4.

6 RESULTATER FRA FEM

Opptredende krefter er beskrevet i vedlegg 5.

7 KAPASITETSKONTROLL STÅL

Beregningen som ble utført viser at brua har nok kapasitet i brudd- og bruksgrensetilstand. De detaljerte resultatene av kapasitetskontrollen for stål er beskrevet i Vedlegg 6.

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

8 LANDKAR

Konseptet for landkarene er å ha nok betongmasse for å overføre kreftene til de 8 pelene, samt kompensere for oppadgående vertikale krefter.

Peler er del av geoteknisk rapport, og redegjøres for der.

Figur 8-1: Prinsipp for fordeling av krefter

Prosjekteringen av landkar er beskrevet i Vedlegg 7.

8.1 JEKKER

Jekkekrefter er beregnet fra analysemodellen. Jekking forutsettes med maksimal vindhastighet og ingen trafikk på gangbrua. Eksentrisiteten er den samme som for lagrene, derfor beregnes kreftene direkte fra modellen. Lagrene kan fastholdes midlertidig horisontalt under jekking ettersom alle lagerpunktene har samme armering.

Minste diameter på jekken vil være D=90 mm.

9 BRUUTSTYR

9.1 LAGER OG FUGER

For å bestemme dimensjonerende belastninger på lagre/skjøter og deres bevegelser benyttes relevante lastkombinasjoner. Temperaturvirkninger for maksimal ekspansjon og sammentrekning beregnet i henhold til NS-EN 1991-1-5 som følger:

 $\Delta T_{N,exp}$ + 20° = +62° / $\Delta T_{N,con}$ - 20° = -58°

To pottelagre i hvert landkar.

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Figur 9-1: Lagerplan

Maksimum/minimum horisontale/vertikale laster, forskyvninger og rotasjoner er hentet fra den globale FE-modellen for de aktuelle lastkombinasjonene.

9.1.1 Lagerkrefter

ULS LOADS ENVELOPE

Lager	type	Fz	Fx (long.)	Fy (transv)	Zone
-	-	kN	kN	kN	-
Lager 4	Free	607	±12.6*	±12.6*	North-west
Lager 3	Fix	612	195 / -107	296 / -276	South-west
Lager 2	Unidir X	603	±12.6*	307 / -298	South-east
Lager 1	Free	604	±12.6*	±12.6*	North-east

SLS LOADS ENVELOPE

Lager	type	Fz	Fx (long.)	Fy (transv)	Zone
-	-	kN	kN	kN	-
Lager 4	Free	451	±8.4*	±8.4*	North-west
Lager 3	Fix	453	136/ -79	187 / -173	South-west
Lager 2	Unidir X	448	±8.4*	194 / -187	South-east
Lager 1	Free	448	±8.4*	±8.4*	North-east

* Values due to friction at bearing, friction need to be added to the overall load acting on the foundation.

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

9.1.2 Bevegelser

From standard FEM model:

Joint	OutputCase	Lager	type	U1	U2	U3	R
Text	Text	Text	Text	mm	mm	mm	%
UN_H_1	SLS	Lager 3	fix	0.0	0.0	0.0	1.05
UN_H_1	SLS	Lager 3	fix	0.0	0.0	0.0	0.95
UN_V_1	SLS	Lager 4	free	13.0	2.5	0.0	0.89
UN_V_1	SLS	Lager 4	free	-13.9	-2.2	0.0	0.46
UN_H_87	SLS	Lager 2	Max	44.6	0.0	0.0	0.81
UN_H_87	SLS	Lager 2	Min	-28.4	0.0	0.0	1.18
UN_V_87	SLS	Lager 1	Max	36.5	2.6	0.0	0.58
UN_V_87	SLS	Lager 1	Min	-19.1	-2.2	0.0	0.81

From bearing FEM model (DT+20 degrees):

Joint	OutputCase	Lager	type	U1	U2	U3	R
Text	Text	Text	Text	mm	mm	mm	%
UN_H_1	SLS	Lager 3	fix	0.0	0.0	0.0	0.94
UN_H_1	SLS	Lager 3	fix	0.0	0.0	0.0	0.77
UN_V_1	SLS	Lager 4	free	15.0	2.8	0.0	1.13
UN_V_1	SLS	Lager 4	free	-15.0	-2.7	0.0	0.70
UN_H_87	SLS	Lager 2	Max	57.8	0.0	0.0	0.59
UN_H_87	SLS	Lager 2	Min	-41.0	0.0	0.0	1.06
UN_V_87	SLS	Lager 1	Max	48.6	2.8	0.0	0.84
UN_V_87	SLS	Lager 1	Min	-31.2	-2.7	0.0	1.00

9.2 LAGRE

Vi dimensjonerer med TOBE type 20. Avstand B mellom bolter 232mm.

Figur 9-2: Fast, ensidig og allsidig lager

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

9.3 FUGER

For fuger forutsettes Migutan FP(G) .../60 S NI I eller tilsvarende. Vi benytter:

FP 110/60 S SI ls ved akse 1

FP 155/60 S SI ls ved akse 2

Expansion joint cover	Joint width max.	Total movement	Visible width	Joint width total	Joint height	Load bearing capacity	Load bearing capacity	Load bearing capacity	Load bearing capacity
						~~	∽ ⊸	- 0.0	\
	<mark>bf max</mark> [mm]	∆b_f [mm]	b_s [mm]	bt [mm]	h [mm]	[kN]	[kN]	[kN]	solid plastic tyres [kg/mm]
FP 80/60 S NI ls	35	20 (±10)	82	201	60	35	600	130	6,5
FPG 80/60 S NI ls	35	16 (±8)	82	201	60	35	600	130	6,5
FP 90/60 S NI ls	50	40 (±20)	95	214	60	35	600	130	
FPG 90/60 S NI ls	50	20 (±10)	95	214	60	35	600	130	4,3
FP 110/60 S NI ls	65	<mark>60</mark> (±30)	111	230	60	35	600	130	
FPG 110/60 S NI ls	65	40 (±20)	111	230	60	35	600	130	
FP 130/60 S NI ls*	90	<mark>90</mark> (±45)	133	252	60	35	600	130	
FP 155/60 S NI ls */**	110	120 (±60)	155	274	60	35	300	70	

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

10 VEDLEGG 1 – HÅNDBEREGNINGER

10.1 VINDLASTER

Kun statiske effekter ettersom periode er mindre enn 2s.

Annex 1.1 Wind forces

Calculations according to NS-EN 1991-1-4

Input data

Peak wind pressure (from design basis)

b := 4 m

 $q_p := 1,41 \frac{\mathrm{kN}}{\mathrm{m}^2}$

$$\begin{split} \boldsymbol{d}_{tot} &:= 1,1 \text{ m} \\ \boldsymbol{A}_{\text{xref}} &:= \boldsymbol{d}_{tot} \cdot 2 \end{split}$$

Value on the safe side

Wind on bridge (perpendicular)

 $\frac{b}{d_{tot}} = 3,6364$ c := 1,3

Figure 8.3, value on the safe side

F (-	$q_p \cdot c \cdot A_{xref}$	-2 0162 k	Ν
1 _c	2	-2,0105 <u>n</u>	n

Two forces one on each chord

Wind on bridge (vertical)

c_{fz} := 0,9

$$\frac{c_{fz} \cdot b \cdot q_p}{2} \cdot \frac{3}{4} = 1,9035 \frac{\text{kN}}{\text{m}}$$
$$\frac{c_{fz} \cdot b \cdot q_p}{2} \cdot \frac{1}{4} = 0,6345 \frac{\text{kN}}{\text{m}}$$

Force closer to wind direction

Force further from wind direction

Wind on bridge (longitudinal)

50% of forces in the longitudinal direction 8.3.4

$$\frac{q_p \cdot c \cdot A_{xref}}{4} = 1,0082 \frac{\text{kN}}{\text{m}}$$

Two forces one on each chord

Wind on members

Upper chord

 $d := 350 \text{ mm} \qquad b := 250 \text{ mm} \qquad r := 18,8 \text{ mm}$ $\frac{r}{b} = 0,0752 \qquad \psi_r := \text{linterp} \left[\begin{bmatrix} 0 \\ 0,2 \\ 0,4 \end{bmatrix}; \begin{bmatrix} 1 \\ 0,5 \\ 0,5 \end{bmatrix}; \frac{r}{b} \right] = 0,812$ $\frac{d}{b} = 1,4 \qquad c_{f,0} := \text{linterp} \left[\begin{bmatrix} 0,2 \\ 0,7 \\ 5 \end{bmatrix}; \begin{bmatrix} 2 \\ 2,4 \\ 1 \end{bmatrix}; \frac{d}{b} \right] = 2,1721 \quad \text{Figure 7.23}$

 $F_{uc} := c_{f,0} \cdot \psi_r \cdot b \cdot q_p = 0,6217 \ \frac{\mathrm{kN}}{\mathrm{m}}$

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	во

Annex 1.1 Wind forces

Diagonal bracing

 $\begin{aligned} d &:= 200 \text{ mm} \qquad b := 200 \text{ mm} \qquad r := 9,4 \text{ mm} \\ \\ \frac{r}{b} &= 0,047 \qquad \psi_r := \text{linterp} \left(\begin{bmatrix} 0\\0,2\\0,4 \end{bmatrix}; \begin{bmatrix} 1\\0,5\\0,5 \end{bmatrix}; \frac{r}{b} \right) = 0,8825 \qquad \text{Figure 7.24} \\ \\ \frac{d}{b} &= 1 \qquad c_{f,0} := \text{linterp} \left(\begin{bmatrix} 0,2\\0,7\\5 \end{bmatrix}; \begin{bmatrix} 2\\2,4\\1 \end{bmatrix}; \frac{d}{b} \right) = 2,3023 \qquad \text{Figure 7.23} \\ \\ \\ F_{ab} := c_{f,0} \cdot \psi_r \cdot b \cdot q_p = 0,573 \frac{\text{kN}}{\text{m}} \end{aligned}$

$$\begin{aligned} d &:= 200 \text{ mm} \qquad b &:= 100 \text{ mm} \qquad r &:= 9,4 \text{ mm} \\ \\ \frac{r}{b} &= 0,094 \qquad \psi_r &:= \text{linterp} \left(\begin{bmatrix} 0\\0,2\\0,4 \end{bmatrix}; \begin{bmatrix} 1\\0,5\\0,5 \end{bmatrix}; \frac{r}{b} \right) = 0,765 \qquad \text{Figure 7.24} \\ \\ \frac{d}{b} &= 2 \qquad c_{f,0} &:= \text{linterp} \left(\begin{bmatrix} 0,2\\0,7\\5 \end{bmatrix}; \begin{bmatrix} 2\\2,4\\1 \end{bmatrix}; \frac{d}{b} \right) = 1,9767 \end{aligned}$$

Additional forces on chords

Force due to higher plexiglass using formulae for vertical walls

$$\begin{split} c_{pD} &:= 1 & c_{pE} := 0,5 \\ A_{ref} &:= 7 \text{ m} \cdot 3,4 \text{ m} \\ L &:= 7 \text{ m} \\ F_{uofr} &:= \frac{c_{pD} \cdot A_{ref} \cdot q_p}{L} \cdot \frac{1}{2} + F_{uc} = 3,0187 \frac{\text{kN}}{\text{m}} \\ F_{lofr} &:= \frac{c_{pD} \cdot A_{ref} \cdot q_p}{L} \cdot \frac{1}{2} + F_{lc} = 4,4133 \frac{\text{kN}}{\text{m}} \\ F_{uoba} &:= \frac{c_{pE} \cdot A_{ref} \cdot q_p}{L} \cdot \frac{1}{2} + F_{uc} = 1,8202 \frac{\text{kN}}{\text{m}} \\ F_{loba} &:= \frac{c_{pE} \cdot A_{ref} \cdot q_p}{L} \cdot \frac{1}{2} + F_{lc} = 3,2148 \frac{\text{kN}}{\text{m}} \end{split}$$

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

Bridge as truss

Chapter 7.11

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

10.2 SJEKK AV PELER

Input

$$\begin{split} N_{Ed} &\coloneqq 350 \text{ kN} \qquad M_{yEd} &\coloneqq 44 \text{ kN m} \qquad M_{zEd} &\coloneqq 26 \text{ kN m} \end{split}$$
 $\begin{aligned} \gamma_{M0} &\coloneqq 1, 1 \qquad \text{According to } 1993 \text{ -} 2 \text{ NA} \end{aligned}$ $f_y &\coloneqq 355 \text{ MPa} \end{split}$

Pile resistance 250x85

Pile cap

Peleveiledningen 11 - 6

$$d := h \qquad z := 0, 26 \text{ m}$$

$$M_{yRd} := 0, 24 \cdot d \cdot z^{2} \cdot 45 \cdot \frac{\text{MPa}}{1, 5} = 123, 6269 \text{ kN m}$$

$$\frac{M_{yEd}}{M_{yRd}} = 0, 3559$$

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

11 VEDLEGG 2 – GLOBAL FEM MODELL, BESKRIVELSE

11.1 GEOMETRY

Global geometry of FEM follows the real geometry at the end of the design process and as defined in the drawings.

Some deviations from the reality are:

- Circular beams are modelled with straight elements.
- The continuous steel plate is modelled as straight plates spanning from horizontal beam to horizontal beam. This results in a slightly higher unsupported span than in reality. (0,6m vs. 0,5m)

Figure 11-1 BIM geometry – Z-levels at key points

The origin is set at the southwest corner of the bridge.

The following criteria are set for naming the beams:

Region	Prefix
Southern upper chord	OV_H_
Northern upper chord	0V_V_
Southern lower chord	UN_H_
Northern lower chord	UN_V_
Southern main bracing	DI_H_
Northern main bracing	DI_V_
Horizontal members	HO_
Wind bracing	VA_

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

11.2 ANALYSIS METHOD

The performed analyses for beam/joint design are linear first order analyses. Additionally, some cases have been studied separately. Theses are modal analysis (for frequencies), buckling analysis and local plate analysis. The combinations with the highest load on the upper chord have been run again.

Dynamic analyses have been run too in order to verify the dynamic behavior of the structure.

No long-term effects are considered to have a significant impact on the bridge.

11.3 MATERIALS

Detailed data about defined materials can be found at the design basis.

11.3.1 Structural steel

Since no plates or thicknesses are above 40mm, there is only one material definition.

The steel weight reflects the real structural weight. In order to account for connection plates, the weight has been increased in the load definition, keeping the material definition according to the design basis.

Material Name and Display Co	lor	\$355	
Material Type	101	Stool	
Material Operate		Sieei	~
Material Grade		3333	full have blacked
material Notes		Mod	ny/Snow Notes
Weight and Mass			Units
Weight per Unit Volume	78,5		KN, m, C \sim
Mass per Unit Volume	8,0048		
sotropic Property Data			
Modulus Of Elasticity, E			2,100E+08
Poisson, U			0,3
Coefficient Of Thermal Expansion	sion, A		1,20E-05
Shear Modulus, G			80769231,
Other Properties For Steel Mate	erials		
Minimum Yield Stress, Fy			355000,
Minimum Tensile Stress, Fu			490000,
Expected Yield Stress, Fye			390500,
Expected Tensile Stress, Fue			561000,

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

11.3.2 Concrete

Concrete is not included in the analysis model but calculated separately.

11.4 SECTIONS

11.4.1 Steel cross sections

The criteria for the choice of cross sections has been the limits defined in NS-EN 1993-1-8 for RHS joints:

	J	oint parameters	[<i>i</i> = 1 or	2, $j = overl$	apped brace]	
Type of joint	b_i/b_0	b_i/t_i and h_i/t_i	or d_i/t_i	h_0/b_0	b_0/t_0	Gap or overlap	
d_i/b_0	Compression	Tension	h_i/b_i	h_0/t_0	$b_{\rm i}/b_{\rm j}$		
T, Y or X	$b_{\mathrm{i}}/b_{\mathrm{0}} \ge 0,25$	$b_i/t_i \le 35$ and $b_i/t_i \le 35$	$b_{\rm i}/t_{\rm i}$		≤ 35 and Class 2	_	
K gap N gap	$b_i/b_0 \ge 0.35$ and $\ge 0.1 + 0.01 b_0/t_0$	and Class 2	≤ 35 and h_i/t_i ≤ 35	≥ 0,5 but ≤ 2,0	≤ 35 and Class 2	$g/b_0 \ge 0.5(1 - \beta)$ but $\le 1.5(1 - \beta)^{(1)}$ and as a minimum $g \ge t_1 + t_2$	
K overlap N overlap	$b_{ m i}/b_0 \ge 0,25$	Class 1				Class 2	$\lambda_{\rm ov} \ge 25\%$ but $\lambda_{\rm ov} \le 100\%^{-2}$ and $b_i/b_j \ge 0.75$
Circular brace member	$d_i/b_0 \ge 0,4$ but $\le 0,8$	Class 1	$d_{\rm i}/t_{\rm i} \leq 50$	As ab	ove but with and d_j rep	d_i replacing b_i lacing b_j .	
¹⁾ If $g/b_0 > 1,5(1-\beta)$ and $g/b_0 > t_1 + t_2$ treat the joint as two separate T or Y joints. ²⁾ The overlap may be increased to enable the toe of the overlapped brace to be welded to the chord.							

Table 7.8: Range of validity for welded joints between CHS or RHS brace members and RHS chord members

Figure 11-2 Criteria to be satisfied with the section design

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

Type of brace	Type of joint	Joint param	neters
Square hollow section	T, Y or X	$b_i/b_0 \le 0.85$	$b_0/t_0 \ge 10$
	K gap or N gap	$0,6 \le \frac{b_1 + b_2}{2b_1} \le 1,3$	$b_0/t_0 \ge 15$
Circular hollow section	T, Y or X		$b_0/t_0 \ge 10$
	K gap or N gap	$0,6 \le \frac{d_1 + d_2}{2d_1} \le 1,3$	$b_0/t_0 \ge 15$

Table 7.9: Additional conditions for the use of Table 7.10

Figure 11-3 Criteria to be satisfied with the section design

Notice that the main truss will have overlap joints while the upper horizontal truss will have gap joints.

The following cross sections have been chosen for the bridge

Region	Prefix
Upper chord	RHS 350x250x14
Lower chord	SHS 200x200x14
Lower chord (central)	SHS 200x200x14
Main bracing (diagonal)	RHS 200x100x8
Main bracing (vertical)	SHS 200x200x8
Horizontal members	SHS 120x120x5
Horizontal members (at both ends)	SHS 120x120x6
Wind bracing	SHS 120x120x5

Figure 11-4 Steel section grouping

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

The sections have been rotated to have the proper inertia and releases. The angle is verified with the "extruded" option of SAP2000.

Figure 11-5 Upper chord and main bracing oriented along the wind

Figure 11-6 Main bracing diagonals oriented along the wind

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

The sections have been defined with the standard definition in SAP2000.

Section Name	DI_200x100x8	Display Color
Section Notes	Modify/Show Notes	
Dimensions		Section
Outside depth (t3)	0,2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Outside width (t2)	0,1	
Flange thickness (tf)	8,000E-03	3
Web thickness (tw)	8,000E-03	
		Properties
Material	Property Modifiers	Section Properties
+ \$355	Set Modifiers	Time Dependent Properties

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

💢 Tube Section \times Section Name DI_VERT_200x200x8 Display Color Modify/Show Notes.. Section Notes Dimensions Section 0,2 Outside depth (t3) 2 0,2 Outside width (t2) 8,000E-03 Flange thickness (tf) 8,000E-03 Web thickness (tw) Properties Section Properties... Material Property Modifiers Time Dependent Properties... + \$355 \sim Set Modifiers.. OK Cancel

Section Name	HO_120X120X5	Display Color
Section Notes	Modify/Show Notes	
Dimensions		Section
Outside depth (t3)	0,12	2
Outside width (t2)	0,12	
Flange thickness (tf)	5,000E-03	3
Web thickness (tw.)	5,000E-03	
1100 111011000 (1117)		
		Properties
Material	Property Modifiers	Section Properties
+ \$355 \\	Set Modifiers	Time Dependent Properties

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

Section Name	HO_END_120X120X6	Display Color
Section Notes	Modify/Show Notes	
Dimensions		Section
Outside depth (t3)	0,12	2
Outside width (t2)	0,12	
Flange thickness (tf)	6,000E-03	3
Web thickness (tw)	6,000E-03	
		Properties
Material	Property Modifiers	Section Properties
+ \$355	✓ Set Modifiers	Time Dependent Properties

Section Name	OV_350x250x14	Display Color
Section Notes	Modify/Show Notes	
Dimensions		Section
Outside depth (t3)	0,35	2
Outside width (t2)	0,25	
Flange thickness (tf)	0,0142	3
Web thickness (tw)	0,0142	
		Properties
Material	Property Modifiers	Section Properties
+ S355	Set Modifiers	Time Dependent Properties

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

Section Name	OV_END_200x200x12	Display Color
Section Notes	Modify/Show Notes	
Dimensions		Section
Outside depth (t3)	0,2	
Outside width (t2)	0,2	
Flange thickness (tf)	0,012	3
Web thickness (tw)	0,012	
		Properties
Material	Property Modifiers	Section Properties
+ \$355	∽ Set Modifiers	Time Dependent Properties

Section Name	UN_200x200x10	Display Color
Section Notes	Modify/Show Notes	
Dimensions		Section
Outside depth (t3)	0,2	2
Outside width (t2)	0,2	
Flange thickness (tf)	0,01	3
Web thickness (tw)	0,01	
		Properties
Material	Property Modifiers	Section Properties
+ \$355	Set Modifiers	Time Dependent Properties

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

Section Name	UN_CEN_200x200x14	Display Color
Section Notes	Modify/Show Notes	
Dimensions	0.2	Section
Outside width (t2)	0,2	
Flange thickness (tf)	0,014	3
Web thickness (tw)	0,014	
		Properties
Material	Property Modifiers	Section Properties
+ S355	✓ Set Modifiers	Time Dependent Properties

Section Name	VA_120x120x5	Display Color
Section Notes	Modify/Show Notes	
Dimensions		Section
Outside depth (t3)	0,12	2
Outside width (t2)	0,12	
Flange thickness (tf)	5,000E-03	3
Web thickness (tw)	5,000E-03	
		Properties
Material	Property Modifiers	Section Properties
+ \$355	> Set Modifiers	Time Dependent Properties

Figure 11-7 Section definitions in SAP2000 model

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

11.4.2 Plate cross sections

The only plate section is a 8mm S355 section. In order to better analyze the local effects a separate model was used with a much finer meshing.

Section Name GU_8mm		Display Color
Section Notes Modify	//Show	
Туре	Thickness	
Shell - Thin	Membrane	8,000E-03
O Shell - Thick	Bending	8,000E-03
O Plate - Thin	Material	
O Plate Thick	Material Name +	S355 ~
O Membrane	Material Anole	0.
O Shell - Layered/Nonlinear	Time Dependent Properties	
Modify/Show Layer Definition	Set Time Depen	dent Properties
Concrete Shell Section Design Parameters	Stiffness Modifiers	emp Dependent Properties
Modify/Show Shell Design Parameters	Set Modifiers	Thermal Properties

Figure 11-8 Plate cross sections definitions in SAP2000

11.5 OFFSETS

Bearings are offset to account for eccentricity.

Figure 11-9 Beam offsets to better reflect the structural situation

No eccentricities are considered for either main bracing (lower end) or wind bracing. NS-EN 1993-1-8 5.1.5 (5) allows us to not consider the eccentricity so the starting point of the braces is adjusted accordingly due to the gap/overlap being smaller than the limit. For the compression chord, eccentricities are introduced in the model.

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Figure 11-10 top chord and main bracing are meeting eccentrically

11.6 RELEASES

According to NS EN 1993-1-8 the RHS joints in the bracing can be modelled as pinned joints for external forces. Forces acting on the bars themselves, need to be taken into account accordingly. Therefore beams in bracings (both vertical and wind bracing) have been modelled as pinned only in the bracing plane. The bracing plane is the vertical plane for the main bracing and the horizontal plane for the wind bracing. Moments due to wind forces acting on the braces will therefore be taken into account.

The lower floor beams have not been modelled as pinned as they will be transferring moment for which they are designed.

Figure 11-11 Beam releases in the lattice plane.

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

04 30-01-2024 FA FI X Assign Frame Releases and Partial Fixity Frame Releases Release Frame Partial Fixity Springs	BO ×
X Assign Frame Releases and Partial Fixity Frame Releases Release Release Frame Partial Fixity Springs	×
X Assign Frame Releases and Partial Fixity Frame Releases Release Release Frame Partial Fixity Springs	×
Frame Releases	
	-
Start End Start End	
Axial Load	
Shear Force 2 (Major)	
Shear Force 3 (Minor)	
Torsion	
Moment 22 (Minor) V O kN-m/rad 0 kN-m/rad	
Moment 33 (Major)	

Figure 11-12 Bracing moment realeases only on the bracing plane.

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

12 VEDLEGG 3 – FEM – LASTER PÅFØRT I MODELLEN

The loads applied are summarized in the following table:

12.1 PERMANENT LOADS

12.1.1 Self-weight (DEAD)

Self-weight of steel is automatically calculated by the software. An additional 5% is added in order to account for welds and plates.

12.1.2 Superimposed dead load (SDL)

1kN/m as described in the design basis. Applied in the upper chord as it is more unfavorable with regards to buckling. The pavement load of 0,15kN/m2 is applied directly on the shells.

Figure 12-1 SDL loads.

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

12.2 VARIABLE LOADS - WIND

Wind loads are obtained from basic values given at Basis of Design, as follows.

Figure 12-2 Areas for wind calculation

The part 8 of the wind Eurocode is applicable for bridges with a near constant section. We have an intermediate case as the structure is neither a lattice structure, nor a bridge.

The strategy therefore has been to divide the structure in two parts and calculate the wind loads separately.

The loads corresponding to the part upper from the lower plexiglass panel have been calculated as loads on individual members on both sides.

This results in a conservative estimate of the wind load, as there will be some wake effects that reduce the actual wind load.

Figure 12-3 Application of northward wind on beams and bridge deck

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

The vertical plexiglass surface is added directly on the chords as an additional load.

Figure 12-4 Application of northward wind on beams and bridge deck

The deck loads are applied on the deck while the beam loads are applied directly on the beams.

The vertical wind forces on the deck, that can act both upwards and downwards, are applied on the chords taking into account the direction of the incoming wind as it will change the point of application. The resulting force has an equivalent point of application corresponding to b/4

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Figure 12-5 upward lower chord forces due to northward wind

Longitudinal wind is applied directly on the chord and is always causing compression.

The described forces are then combined to the following load cases.

Loadings are consistent with the wind calculations annex (see annex 1).

Figure 12-6 WINDYPOSZPOS northward upward wind*

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Figure 12-9 WINDYNEGZNEG southward downward wind*

* Loadings are scaled per element so size can be misleading

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

12.3 VARIABLE LOADS - TEMPERATURE

Three cases are considered. Differential temperature is unlikely as the bridge is oriented east-west and even if it happened, it would have no effect as the bridge is free to move. Temperature difference however could be relevant.

Figure 12-10 Temperature load cases

A couple of additional temperature load cases are considered, in order to evaluate the extra temperature for bearings (±20C) and joints design.

12.4 VARIABLE LOADS - SNOW

Snow loads always give lower loads than traffic. They are therefore not used in the combinations as it cannot be combined with traffic.
Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

12.5 VARIABLE LOADS - FRICTION FORCES AT SLIDING BEARINGS

Friction loads at sliding bearings are obtained as a 6% of the permanent loads.

The reactions with permanent loads are:

TABLE: Jo	int Reactions							
Joint	OutputCase	CaseType	F1	F2	F3	M1	M2	M3
Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
UN_H_1	PERM	LinStatic	0	0	139,883	0	0	0
UN_V_1	PERM	LinStatic	0	0	139,883	0	0	0
UN_H_87	PERM	LinStatic	0	0	139,883	0	0	0
UN_V_87	PERM	LinStatic	0	0	139,883	0	0	0

The value for the bearings on the directions sliding are therefore:

139,88 kN \cdot 6 % = 8,3928 kN

The loads are applied in the worst direction possible creating the maximum compressions.

Figure 12-11 Bearing friction forces

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

12.6 VARIABLE LOADS - TRAFFIC LOADS

This section is divided in two groups, the ones for crowd and the service vehicle loading. Values are according to design basis.

12.6.1 Distributed loads

Vertical load is considered distributed along the whole length of the bridge

Horizontal forces are uniformly distributed along the pavement according to NS-EN 1991-2 4.4.1 (4)

Figure 12-12 Load cases for uniformly distributed traffic

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

12.6.2 Concentrated loads: Service vehicle

A service vehicle of 43kN is considered. This is based on the Volvo L20 F vehicle taken as a reference. The load is therefore 10,75kN per wheel.

In order to taken into account the worst cases, three options are considered: centric, eccentric to the left with one wheel in the middle and eccentric to the right with one wheel in the middle.

Figure 12-13 Concentrated loads on three different lanes

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	ВО

Load cases with truck partly on the bridge were also considered.

We defined 90 load cases for each lane on SAP2000 and then combined them in one envelope combination in order to simplify the load combination matrix.

For load case definition, concentrated loads were combined with horizontal traffic loads.

Figure 12-15 Load case definition with both vertical and horizontal loads

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

12.7 IMPERFECTION

In order to account for global buckling, and imperfection load is used in accordance with chapter 5.2.2 in NS-EN 1993-1-1.

With rectangular hollow sections the buckling curve will be "a". Therefore the imperfection e0 will be:

$$L := 51, 5 \text{ m}$$
 $e_0 := \frac{L}{300} = 171,6667 \text{ mm}$

The maximum load considering Figure 5.4 of 1993-1-1 will therefore be:

$$N_{Ed} := 1600 \text{ kN}$$
 $\frac{8 \cdot N_{Ed} \cdot e_0}{r_e^2} = 0,8285 \frac{\text{kN}}{\text{m}}$

The distribution along the top chord will vary along with the design axial force:

Figure 12-16 Imperfection load distribution.

12.8 DYNAMIC LOAD

In order to calculate the forces for dynamic loading we have used the guidelines of Design of lightweight footbridges for human induced vibrations from the European Commission as the Eurocodes don't give force values to be used for pedestrian bridges.

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

Input data

$\xi := 0, 4$ %		Steel damping from DB
$S := 50 \text{ m} \cdot 3 \text{ m} = 150$	m ²	Walkable surface
$f_{sv} := 4,47$ Hz	$f_{sh} \coloneqq 1,33 \text{ Hz}$	Eigenfrequencies from FEM

Loads

Reference: EUR 23984 EN, Design of lightweight footbridges for human induces vibrations (Table 4.8)

EUR 23984 EN 4.3.1

$n_{service} := 15$	15 people - very light traffic
$d_{crowd} := \frac{1}{\frac{2}{m}}$	

EUR 23984 EN Table 4.8

$P_v := 280 \text{ N}$	Vertical force, mulitply by two to get amplitude
$P_h := 35 \text{ N}$	Horizontal force, mulitply by two to get amplitude

Reduction coefficient

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

 $P_{v} \cdot n_{p} \cdot \psi_{v} = 0,401 \frac{N}{m^{2}} \qquad P_{h} \cdot 2 \cdot n_{p} \cdot \psi_{h} = 0 \frac{kN}{m^{2}}$

$$\psi_{\mathbf{v}} := \texttt{linterp}\left(\begin{bmatrix} 4, 2\\ 4, 6 \end{bmatrix}; \begin{bmatrix} 0, 25\\ 0 \end{bmatrix}; \begin{array}{c} f_{s\mathbf{v}} \\ \text{Hz} \end{bmatrix} = 0,0812 \qquad \qquad \psi_h := 0$$

Normal use (table 4.8)

$$\begin{split} &n:=n_{service} \\ &n_p:=\frac{10,8\cdot\sqrt{\xi\cdot n}}{S}=0,018\cdot\frac{1}{m^2} \end{split}$$

Equivalent forces

Crowded

 $n \coloneqq d_{crowd} \cdot S = 150$

$$n_p := \frac{1,85 \cdot \sqrt{n}}{S} = 0,15 \cdot \frac{1}{m^2}$$

Equivalent forces

$$P_h \cdot 2 \cdot n_p \cdot \psi_h = 0 \ \frac{\mathrm{kN}}{\mathrm{m}^2}$$

The dynamic loads are modelled with a uniformly distributed load on the plates.

 $P_{v} \cdot n_{p} \cdot \psi_{v} = 3,44 \frac{N}{m^{2}}$

Figure 12-17 Vertical dynamic loads in service and full bridge in N/m².

The loads were applied with a sinusoidal shape in a time-history analysis.

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Figure 12-18 Time history definition for vertical forces.

The results are as follows:

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

Figure 12-21 Horizontal accelerations with a crowd.

Limits

Reference 1991 -2 A2.4.3.2

$$a_{vRd} := 0, 7 \frac{m}{s^2}$$

$$a_{hRd} := 0, 2 \frac{m}{2}$$

а

$$a_{crowdRd} \coloneqq 0, 4 \frac{m}{2}$$

Calculated accelerations

Results from SAP2000 model.

$$a_{vEd} := (0, 015) \frac{m}{2}$$

$$_{hEd} := (0,003) \frac{m}{s^2}$$

$$a_{crowdEd} := (0, 27) \frac{m}{2}$$

 $\frac{a_{vEd}}{a_{vRd}} = 0,021$

$$\frac{a_{hEd}}{a_{hRd}} = 0,015$$

$$\frac{a_{crowdEd}}{a_{crowdRd}} = 0,68$$

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

12.9 LOAD COMBINATIONS

12.9.1 General design combinations

Load combinations are done by means of an Excel sheet. The criterion has been testing all possible combinations of actions. The loads have been defined in a way that allows this to be implemented.

Combo	TYPE	DEAD	SDL	W	Т	TR	BE
ULS_01	ULS	1,20	1,20				
ULS_02	ULS	1,00	1,00				
ULS_03	ULS	1,20	1,20	1,60	0,84	0,95	0,95
ULS_04	ULS	1,00	1,00	1,60	0,84	0,95	0,95
ULS_05	ULS	1,20	1,20	1,12	1,20	0,95	0,95
ULS_06	ULS	1,00	1,00	1,12	1,20	0,95	0,95
ULS_07	ULS	1,20	1,20	1,12	0,84	1,35	0,95
ULS_08	ULS	1,00	1,00	1,12	0,84	1,35	0,95
ULS_09	ULS	1,20	1,20	1,12	0,84	0,95	1,35
ULS_10	ULS	1,00	1,00	1,12	0,84	0,95	1,35
ULS_11	ULS	1,35	1,35	1,12	0,84	0,95	0,95
ULS_12	ULS	1,00	1,00	1,12	0,84	0,95	0,95
SLSR_01	SLS	1,00	1,00				
SLSR_03	SLS	1,00	1,00	1,00	0,70	0,70	0,70
SLSR_05	SLS	1,00	1,00	0,70	1,00	0,70	0,70
SLSR_07	SLS	1,00	1,00	0,70	0,70	1,00	0,70
SLSR_09	SLS	1,00	1,00	0,70	0,70	0,70	1,00
SLSFQ_01	SLS	1,00	1,00				
SLSFQ_03	SLS	1,00	1,00	0,60	0,50	0,50	0,50
SLSFQ_05	SLS	1,00	1,00	0,50	0,60	0,50	0,50
SLSFQ_07	SLS	1,00	1,00	0,50	0,50	0,70	0,50
SLSFQ_09	SLS	1,00	1,00	0,50	0,50	0,50	0,60
SLSQP_01	SLS	1,00	1,00				
SLSQP_03	SLS	1,00	1,00	0,50	0,50	0,50	0,50

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

An example of some combinations is shown below:

Combo	DEAD	SDL	ND_YposZ	ND_YposZi	ND_YnegZ	ND_YnegZi	BEARFR	TEMPGRAD	ТЕМР_НОТ	EMP_COLD
ULS_01_1	1,20	1,20								
ULS_02_1	1,00	1,00								
ULS_03_1	1,20	1,20								
ULS_03_2	1,20	1,20						0,84		
ULS_03_3	1,20	1,20							0,84	
ULS_03_4	1,20	1,20								0,84
ULS_03_5	1,20	1,20					0,95			
ULS_03_6	1,20	1,20					0,95	0,84		
ULS_03_7	1,20	1,20					0,95		0,84	
ULS_03_8	1,20	1,20					0,95			0,84
ULS_03_9	1,20	1,20	1,60							
ULS_03_10	1,20	1,20	1,60					0,84		
ULS_03_11	1,20	1,20	1,60						0,84	
ULS_03_12	1,20	1,20	1,60							0,84
ULS_03_13	1,20	1,20	1,60				0,95			
ULS_03_14	1,20	1,20	1,60				0,95	0,84		
ULS_03_15	1,20	1,20	1,60				0,95		0,84	
ULS_03_16	1,20	1,20	1,60				0,95			0,84
ULS_03_17	1,20	1,20		1,60						
ULS_03_18	1,20	1,20		1,60				0,84		
ULS_03_19	1,20	1,20		1,60					0,84	
ULS_03_20	1,20	1,20		1,60						0,84

12.9.2 Second order analysis combinations

Additionally, the combinations with the highest axial load on the top chord were picked for a second order analysis including imperfections. Partial factors were copied, and imperfection was added. The list is shown below.

Combo	DEAD	SDL	TRAF_Xpos	WIND_YposZneg	BEARFR	TEMPGRAD	TEMP_HOT	TEMP_COLD	IMP
BUCKL_07_57	1,20	1,20	1,35	1,12					1,00
BUCKL_07_58	1,20	1,20	1,35	1,12		0,84			1,00
BUCKL_07_59	1,20	1,20	1,35	1,12			0,84		1,00
BUCKL_07_60	1,20	1,20	1,35	1,12				0,84	1,00
BUCKL_07_61	1,20	1,20	1,35	1,12	0,95				1,00
BUCKL_07_62	1,20	1,20	1,35	1,12	0,95	0,84			1,00

Both the imperfection, the relevant combinations and the relevant buckling mode all show a torsion of the structure in the same direction. The imperfection is therefore considered adequate.

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	во

Figure 12-22 Most unfavorable load combination for upper chord, imperfection loadcase and first global buckling mode.

Since second order effects are nonlinear, the combinations are actually defined as a load cases.

.oad Case Name		Notes	Load Case Type
BUCKL_07_57-NL	Set Def Nam	Modify/Show	Static V Design
nitial Conditions			Analysis Type
Zero Initial Condit	ons - Start from Unstressed State		O Linear
O Continue from Sta	te at End of Nonlinear Case	\sim	Nonlinear
Important Note:	Loads from this previous case are	included in the current case	O Nonlinear Staged Construction
lodal Load Case			Geometric Nonlinearity Parameters
All Modal Loads App	lied Use Modes from Case	MODAL \sim	O None
			P-Delta
Loads Applied	Load Name 5	Scale Factor	O P-Delta plus Large Displacements
Load Pattern	DEAD V 1	1,2	Mass Source
Load Pattern	SDL 1	1,2 A Add	Previous 🗸
Load Pattern	TRAF_LX 1	1,35	
Load Pattern	TRAFF 1	1,35 Modify	
Load Pattern	WIND+Y	1,12 mounty	
Load Pattern		1,12 L 42 Delete	
Load Pattern		Delete	
Load Pattern	MP 1	1,12 1, V	
Load Pattern Other Parameters			OK
Load Pattern Other Parameters Load Application	Full Load	Modify/Show	ОК
Load Pattern Other Parameters Load Application Results Saved	Full Load Final State Only	Modify/Show Modify/Show	OK

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

	me (User-Generated)	BUCKL_07_57	
Notes		Modify/Show	Notes
Load Combination Type		Linear Add	~
ptions			
Convert to User Loa	ad Combo Create No	onlinear Load Case from Loa	d Combo
efine Combination of Loa	Id Case Results	Soolo Easter	
efine Combination of Loa Load Case Name BUCKL 07 57-NL	Id Case Results Load Case Type	Scale Factor	
efine Combination of Loa Load Case Name BUCKL_07_57-NL BUCKL_07_57-NL	Id Case Results Load Case Type Nonlinear Static Nonlinear Static	Scale Factor	
efine Combination of Loa Load Case Name BUCKL_07_57-NL BUCKL_07_57-NL	Id Case Results Load Case Type Nonlinear Static Nonlinear Static	Scale Factor 1, 1, 1,	Add
efine Combination of Loa Load Case Name BUCKL_07_57-NL BUCKL_07_57-NL	Id Case Results Load Case Type Nonlinear Static Nonlinear Static	Scale Factor 1, 1, 1,	Add
efine Combination of Loa Load Case Name BUCKL_07_57-NL BUCKL_07_57-NL	Id Case Results Load Case Type Nonlinear Static Nonlinear Static	Scale Factor 1, 1, 1,	Add Modify
fine Combination of Loa Load Case Name BUCKL_07_57-NL BUCKL_07_57-NL	Id Case Results Load Case Type Nonlinear Static Nonlinear Static	Scale Factor 1, 1, 1,	Add Modify

Figure 12-23 Example of a nonlinear load combination definition.

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

13 VEDLEGG 4 – GLOBAL OPPFØRSEL

13.1 GLOBAL STABILITY

We performed a global buckling analysis considering the combination that gives the highest compression forces on the upper chord.

			Notes	Load Case Type
BUCKL	Set	t Def Name	Modify/Show	Buckling \checkmark Design
iffness to Use				Mass Source
Zero Initial Cond	itions - Unstressed State			MSSSRC1
) Stiffness at End	of Nonlinear Case			
Important Note:	Loads from the Nonlinear	Case are NOT inclue	ded in the current	
	case			
ads Applied				
Load Type	Load Name	Scale Facto	or	
Load Pattern	V DEAD	√ 1,2		
Load Pattern	DEAD	1,2		
Load Pattern	SDL	1,2	Add	
	TRAF_LX	1,35		
Load Pattern		4.95	Modify	
Load Pattern Load Pattern	TRAFF	1,00		
Load Pattern Load Pattern Load Pattern	TRAFF WIND+Y	1,12		
Load Pattern Load Pattern Load Pattern Load Pattern	TRAFF WIND+Y WIND-Z+Y	1,12	Delete	

Figure 13-1 Buckling load case definition

Figure 13-2 First relevant buckling mode

The amplification value is larger than 3 but close. We have performed nonlinear analyses with the worst load combinations.

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

13.2 MODAL ANALYSIS AND VIBRATION

We carried out a model analysis to analyze the vibration modes of the bridge.

The first mode has a period of less than 2s, so dynamic wind effects can be disregarded. Be aware that this mode is excited by upper lateral loading (wind).

Figure 13-4 Second vibration mode (sway)

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

 Image: Weight of the system
 Image: Weight of the system

 Image: Weight of the system
 Image: Weight of the system

Figure 13-5 Third vibration mode (vertical)

As there were several modes, a time history analysis was carried out. The highest acceleration values were found in the lower node in the middle and are presented below.

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

Figure 13-7 Horizontal accelerations in service.

Figure 13-8 Horizontal accelerations with a crowd.

Limits

Reference 1991 - 2 A2.4.3.2

$$a_{crowdRd} \coloneqq 0, 4 \frac{m}{2}$$

Calculated accelerations

Results from SAP2000 model.

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

14 VEDLEGG 5 – FEM RESULTATER

14.1 FORCES

This chapter shows the envelope of forces at main girders and piers for any combination.

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

Figure 14-2 ULS axial forces, main moments and torsion on lower chord

Figure 14-3 ULS axial forces and moments on main bracing

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Figure 14-4 ULS axial forces and moments on lower horizontal beams

Figure 14-5 ULS axial forces and moments on wind bracing

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

14.2 REACTIONS

Reaction points are shown in the following figures and summarized in the table below

Figure 14-6 Node names.

TABLE: Jo	int Reactions					
Joint	OutputCase	CaseType	StepType	F1	F2	F3
Text	Text	Text	Text	KN	KN	KN
UN_H_1	DEAD	LinStatic		0	0	107
UN_H_1	SDL	LinStatic		0	0	34
UN_H_1	TEMP_HOT	LinStatic		0	0	0
UN_H_1	TEMP_COLD	LinStatic		0	0	0
UN_H_1	TEMPGRAD	LinStatic		0	0	0
UN_H_1	BEARFR	LinStatic		8	8	0
UN_H_1	ULS	Combination	Max	195	296	612
UN_H_1	ULS	Combination	Min	-107	-276	-98
UN_H_1	Vehicle	Combination	Max	-79	-3	27
UN_H_1	Vehicle	Combination	Min	-79	-6	-3

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjo	on		Dato		Utf.	Kontr.		(Godkj.	
04			30-01-2024		FA		FI		BO	
	SIS		Combination	Max	1	36	197	152		
UN H 1	SLS		Combination	Min		79	-173	-9		
UN V 1	DEAD		LinStatic			0	0	107		
UN V 1	SDL		LinStatic			0	0	34		
UN V 1	TEMP H	ют	LinStatic			0	0	0		
UN V 1	TEMP C	OLD	LinStatic			0	0	0		
UN_V_1	TEMPGF	RAD	LinStatic			0	0	0		
UN_V_1	BEARFR		LinStatic			0	0	0		
UN_V_1	ULS		Combination	Max		0	0	607		
UN_V_1	ULS		Combination	Min		0	0	-100		
UN_V_1	Vehicle		Combination	Max		0	0	31		
UN_V_1	Vehicle		Combination	Min		0	0	1		
UN_V_1	SLS		Combination	Max		0	0	451		
UN_V_1	SLS		Combination	Min		0	0	-10		
UN_H_87	DEAD		LinStatic			0	0	107		
UN_H_87	SDL		LinStatic			0	0	34		
UN_H_87	TEMP_H	IOT	LinStatic			0	0	0		
UN_H_87	TEMP_C	OLD	LinStatic			0	0	0		
UN_H_87	TEMPGF	RAD	LinStatic			0	0	0		
UN_H_87	BEARFR		LinStatic			0	8	0		
UN_H_87	ULS		Combination	Max		0	307	603		
UN_H_87	ULS		Combination	Min		0	-298	-94		
UN_H_87	Vehicle		Combination	Max		0	3	30		
UN_H_87	Vehicle		Combination	Min		0	-1	1		
UN_H_87	SLS		Combination	Max		0	194	448		
UN_H_87	SLS		Combination	Min		0	-187	-6		
UN_V_87	DEAD		LinStatic			0	0	107		
UN_V_87	SDL		LinStatic			0	0	34		
UN_V_87	TEMP_H	IOT	LinStatic			0	0	0		
UN_V_87	TEMP_C	OLD	LinStatic			0	0	0		
UN_V_87	TEMPGF	RAD	LinStatic			0	0	0		
UN_V_87	BEARFR		LinStatic			0	0	0		
UN_V_87	ULS		Combination	Max		0	0	604		
UN_V_87	ULS		Combination	Min		0	0	-91		
UN_V_87	Vehicle		Combination	Max		0	0	29		
UN_V_87	Vehicle		Combination	Min		0	0	0		
UN_V_87	SLS		Combination	Max		0	0	448		
UN_V_87	SLS		Combination	Min		0	0	-4		

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

15 VEDLEGG 6 – STEEL DESIGN VERIFICATIONS

15.1 FRAME DESIGN

Steel frames have been designed with SAP2000 internal code. The results have been verified, especially when it comes to buckling lengths.

15.1.1 Ultimate Limit State verifications

15.1.1.1 Classification of cross-sections

The section classification has been done considering all profiles welded. This is not taking into account the radius as NS-EN 1993-1-1 allows.

Section	c/t	Class
RHS 350x250x14	25	1
SHS 200x200x10	20	1
SHS 200x200x14	12	1
RHS 200x100x10	20	1
SHS 120x120x5	24	1
SHS 120x120x6	20	1

15.1.1.2 Bending and shear resistance

All steel sections have been designed to be class 1. Therefore local plate buckling is not a concern except at supports (handled as special detail). The joint plate buckling is taken into account with Eurocodes formulae.

Analyses are performed according to NS-EN 1993-1-1.

Figure 15-1 Bending and shear utilization in color codes. Red is over the limit.

The worst cases are shown below:

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

15.1.1.3 Lower chord

The worst case for the lower chord is the nonlinear case with the wind forces blowing and making it compress.

Eurocode 3-2005 STEEL SECTION CHECK (Flexural Details for Combo and Station) Units : KN, m, C
 Frame : UN_V_44
 X Mid: 26,085
 Combo: ULSBUCKL
 Design Type: Beam

 Length: 0,600
 Y Mid: 3,543
 Shape: UN_CEN_200x200x14Frame Type: DCH-MRF

 Loc : 0,600
 Z Mid: 0,814
 Class: Class 1
 Rolled : No
 Country=CEN Default Combination=Eq. 6.10 Reliability=Class 2 Interaction=Method 2 (Annex B) MultiResponse=Envelopes P-Delta Done? No Consider Torsion? No GammaM0=1,10 GammaM1-1,10 RLLF=1,000 GammaM1=1,10 GammaM2=1,25 PLLF=0,750 D/C Lim=1,000 Aeff=0,010eNy=0,000eNz=0,000A=0,010Iyy=6,040E-05iyy=0,076Wel,yy=6,040E-04Weff,yy=6,040E-04It=9,009E-05Izz=6,040E-05izz=0,076Wel,zz=6,040E-04Weff,zz=6,040E-04Iw=0,000Iyz=0,000h=0,200Wpl,yy=7,279E-04Av,y=0,006E=210000000,0fy=355000,000fu=510000,000Wpl,zz=7,279E-04Av,z=0,006 Aeff=0,010 eNy=0,000 STRESS CHECK FORCES & MOMENTS
 Ned
 Med, yy
 Med, zz
 Ved, z
 Ved, y
 Ted

 1705,616
 -101,948
 -4,161
 -17,104
 -1,090
 21,326
 Location 0,600 PMM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.2.1(7)) D/C Ratio: 0,959 = 0,507 + 0,434 + 0,018 < 1,000 OK = (NEd/NRd) + (My,Ed/My,Rd) + (Mz,Ed/Mz,Rd) (EC3 6.2.1(7)) BASIC FACTORS
 Buckling Mode
 K Factor
 L Factor
 Lcr/i

 Major (y-y)
 1,000
 1,000
 7,879

 Major Braced
 1,000
 1,000
 7,879
 1,000 1,000 7,879 1,000 1,000 7,879 1,000 1,000 7,879 1,000 1,000 7,879 Minor (z-z) Minor Braced LTB AXIAL FORCE DESIGN Ned Nc, Rd Nt, Rd Force Capacity Capacity 1705,616 3361,527 3361,527 Axial
 Npl,Rd
 Nu,Rd
 Ncr,T
 Ncr,TF
 An/Ag

 3361,527
 3824,755
 627414,679
 347734,928
 1,000
 CurveAlphaNcrLambdaBarPhiChiNb, RdMajor (y-y)c0,490347734,9280,1030,4821,0003361,527MajorB(y-y)c0,490347734,9280,1030,4821,0003361,527Minor (z-z)c0,490347734,9280,1030,4821,0003361,527MinorB(z-z)c0,490347734,9280,1030,4821,0003361,527MinorB(z-z)c0,490347734,9280,1030,4821,0003361,527Torsional TFc0,490347734,9280,1030,4821,0003361,527

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

15.1.1.4 Upper chord

Nonlinear combination is governing as expected.

Eurocode 3-2005 STEEL SECTION CHECK (Flexural Details for Combo and Station) Units : KN, m, C
 Frame : OV_V_5
 X Mid: 21,954
 Combo: BUCKL_07_58
 Design Type: Brace

 Length: 7,673
 Y Mid: 3,789
 Shape: OV_350x250x14
 Frame Type: DCH-MRF

 Loc : 7,673
 Z Mid: 5,510
 Class: Class 1
 Rolled : Yes
 Country=CEN Default Combination=Eq. 6.10 Reliability=Class 2 Interaction=Method 2 (Annex B) MultiResponse=Envelopes P-Delta Done? No Consider Torsion? No GammaM0=1,10 Gammari--,... Coo RLLF=1,000 GammaM1=1,10 GammaM2=1,25 PLLF=0,750 D/C Lim=0,950 Aeff=0,016eNy=0,000eNz=0,000A=0,016Iyy=2,790E-04iyy=0,131Wel,yy=0,002Weff,yy=0,002It=3,115E-04Izz=1,641E-04izz=0,101Wel,zz=0,001Weff,zz=0,001Iw=0,000Iyz=0,000h=0,350Wpl,yy=0,002Av,y=0,007E=210000000,0fy=355000,000fu=510000,000Wpl,zz=0,002Av,z=0,010 STRESS CHECK FORCES & MOMENTS
 Ned
 Med, yy
 Med, zz
 Ved, z
 Ved, y
 Ted

 -1821,409
 -77,469
 46,008
 33,386
 -22,687
 6,723
 Location Ted 7,673 PMM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.3.3(4)-6.62) D/C Ratio: 0,616 = 0,522 + 0,041 + 0,053 < 0,950 OK = NEd/(Chi_z NRk/GammaM1) + kzy (My,Ed+NEd eNy)/(Chi_LT My,Rk/GammaM1) + kzz (Mz,Ed+NEd eNz)/(Mz,Rk/GammaMl) (EC3 6.3.3(4)-6.62) BASIC FACTORS
 Buckling Mode
 K Factor
 L Factor
 Lcr/i

 Major (y-y)
 1,000
 1,000
 58,533

 Major Braced
 1,000
 1,000
 58,533

 Minor (z-z)
 1,000
 1,000
 76,323

 Minor Braced
 1,000
 1,000
 76,323

 LTB
 1,000
 1,000
 76,323
 AXIAL FORCE DESIGN . Ned Nc,Rd Nt,Rd Force Capacity Capacity -1821,409 5238,974 5238,974 Axial Npl,Rd Nu,Rd Ncr,T Ncr,TF An/Ag 5238,974 5960,919 921822,015 5775,954 1,000 CurveAlphaNcrLambdaBarPhiChiNb,RdMajor (y-y)a0,2109820,3970,7660,8530,8154267,264MajorB(y-y)a0,2109820,3970,7660,8530,8154267,264Minor (z-z)a0,2105775,9540,9991,0830,6663491,226MinorB(z-z)a0,2105775,9540,9991,0830,6663491,226Torsional TFa0,2105775,9540,9991,0830,6663491,226

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

15.1.1.5 Main bracing (diagonal members)

The small diagonals at the end are the most loaded ones.

Eurocode 3-2005 STEEL SECTION CHECK (Flexural Details for Combo and Station) Units : KN, m, C
 Frame : DI_V_2
 X Mid: 1,332
 Combo: BUCKL_07_60
 Design Type: Brace

 Length: 3,446
 Y Mid: 3,533
 Shape: DI_200x100x10
 Frame Type: DCH-MRF

 Loc
 : 3,446
 Z Mid: 0,627
 Class: Class 1
 Rolled : No
 Class: Class 1 Rolled : No Country=CEN Default Combination=Eq. 6.10 Reliability=Class 2 MultiResponse=Envelopes Interaction=Method 2 (Annex B) P-Delta Done? No Consider Torsion? No GammaM0=1,10 GammaM1=1,10 GammaM2=1,25 An/Ag=1,00 RLLF=1,000 PLLF=0,750 D/C Lim=0,950 Aeff=0,006eNy=0,000eNz=0,000A=0,006Iyy=2,779E-05iyy=0,070Wel,yy=2,779E-04Weff,yy=2,779E-04It=2,089E-05Izz=8,987E-06izz=0,040Wel,zz=1,797E-04Weff,zz=1,797E-04Iw=0,000Iyz=0,000h=0,200Wpl,yy=3,520E-04Av,y=0,002E=210000000,0fy=355000,000fu=510000,000Wpl,zz=2,120E-04Av,z=0,004 STRESS CHECK FORCES & MOMENTS Ned Med,yy Med,zz Ved,z Ved,y Ted 9,690 -6,908 0,000 -3,264 -11,315 0,797 Location 1239,690 3,446 PMM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.2.1(7)) 0,950 D/C Ratio: 0,747 = 0,686 + 0,061 + 0,000 < OK = (NEd/NRd) + (My, Ed/My, Rd) + (Mz, Ed/Mz, Rd) (EC3 6.2.1(7)) BASIC FACTORS
 IC FACTORS

 Buckling Mode
 K Factor
 L Factor
 Lcr/i

 Major (y-y)
 1,000
 1,000
 48,924

 Major Braced
 1,000
 1,000
 48,924

 Minor (z-z)
 1,000
 1,000
 86,028

 Minor Braced
 1,000
 1,000
 86,028

 LTB
 1,000
 1,000
 86,028
 AXIAL FORCE DESIGN Ned Nc, Rd Nt, Rd Force Capacity Capacity 1239,690 1807,273 1807,273 Axial
 Npl,Rd
 Nu,Rd
 Ncr,T
 Ncr,TF
 An/Ag

 1807,273
 2056,320
 256900,625
 1568,295
 1,000
 CurveAlphaNcrLambdaBarPhiChiNb, RdMajor (y-y)c0,4904849,1480,6400,8130,7611375,797MajorB(y-y)c0,4904849,1480,6400,8130,7611375,797Minor (z-z)c0,4901568,2951,1261,3610,471850,606MinorB(z-z)c0,4901568,2951,1261,3610,471850,606Torsional TFc0,4901568,2951,1261,3610,471850,606

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

15.1.1.6 Main bracing (vertical members)

The worst combination is the one with the wind blowing directly which results in a very small axial force but a considerable moment.

Eurocode 3-2005 STEEL SECTION CHECK (Flexural Details for Combo and Station) Units : KN, m, C Frame : DI_H_21X Mid: 51,737Combo: ULSBUCKLDesign Type: BraceLength: 1,127Y Mid: -0,028Shape: DI_VERT_200x200xlFrame Type: DCH-MRFLoc : 1,127Z Mid: 0,538Class: Class 1Rolled : No Country=CEN Default Combination=Eq. 6.10 Interaction=Method 2 (Annex B) MultiResponse=Envelopes Reliability=Class 2 Country=CEN Default P-Delta Done? No Consider Torsion? No GammaM0=1,10 GammaM1=1,10 GammaM2=1,25 An/Ag=1,00 RLLF=1,000 PLLF=0,750 D/C Lim=1,000 Aeff=0,008eNy=0,000eNz=0,000A=0,008Iyy=4,585E-05iyy=0,078Wel,yy=4,585E-04Weff,yy=4,585E-04It=6,859E-05Izz=4,585E-05izz=0,078Wel,zz=4,585E-04Weff,zz=4,585E-04Iw=0,000Iyz=0,000h=0,200Wpl,yy=5,420E-04Av,y=0,004E=210000000,0fy=355000,000fu=510000,000Wpl,zz=5,420E-04Av,z=0,004 STRESS CHECK FORCES & MOMENTS
 Location
 Ned
 Med, yy
 Med, zz
 Ved, z
 Ved, y
 Ted

 1,127
 -607,084
 13,556
 0,000
 -11,087
 0,316
 -4,701
 PMM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.2.1(7)) D/C Ratio: 0,325 = 0,248 + 0,077 + 0,000 < 1,000 OK = (NEd/NRd) + (My,Ed/My,Rd) + (Mz,Ed/Mz,Rd) (EC3 6.2.1(7)) BASIC FACTORS Buckling Mode K Factor L Factor Lcr/i
 Buckling Mode
 K Factor
 L Factor
 Lcr/i

 Major (y-y)
 1,000
 1,000
 14,505

 Major Braced
 1,000
 1,000
 14,505

 Minor (z-z)
 1,000
 1,000
 14,505

 Minor Braced
 1,000
 1,000
 14,505

 LTB
 1,000
 1,000
 14,505
 AXIAL FORCE DESIGN Ned Nc,Rd Nt,Rd Force Capacity Capacity -607,084 2452,727 2452,727 Axial
 Npl,Rd
 Nu,Rd
 Ncr,T
 Ncr,TF
 An/Ag

 2452,727
 2790,720
 459112,835
 74872,150
 1,000
 CurveAlphaNcrLambdaBarPhiChiNb,RdMajor (y-y)c0,49074872,1500,1900,5161,0002452,727MajorB(y-y)c0,49074872,1500,1900,5161,0002452,727Minor (z-z)c0,49074872,1500,1900,5161,0002452,727MinorB(z-z)c0,49074872,1500,1900,5161,0002452,727Torsional TFc0,49074872,1500,1900,5161,0002452,727

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

15.1.1.7 Wind bracing

Imperfection loads force the upper horizontal members to try to keep the bridge shape creating important secondary moments.

Eurocode 3-2005 STEEL SECTION CHECK (Flexural Details for Combo and Station) Units : KN, m, C
 Frame : VA_1
 X Mid: 18,122
 Combo: BUCKL_07_58
 Design Type: Beam

 Length: 4,057
 Y Mid: 1,750
 Shape: VA_120x120x5
 Frame Type: DCH-MRF

 Loc
 : 0,000
 Z Mid: 5,316
 Class: Class 1
 Rolled : No
 Country=CEN Default Combination=Eq. 6.10 Reliability=Class 2 Interaction=Method 2 (Annex B) MultiResponse=Envelopes P-Delta Done? No Consider Torsion? No GammaM0=1,10 GammaM1=1,10 GammaM2=1,25 An/Ag=1,00 RLLF=1,000 PLLF=0,750 An/Ag=1,00 D/C Lim=0,950 Aeff=0,002eNy=0,000eNz=0,000A=0,002Iyy=5,079E-06iyy=0,047Wel,yy=8,465E-05Weff,yy=8,465E-05It=7,604E-06Izz=5,079E-06izz=0,047Wel,zz=8,465E-05Weff,zz=8,465E-05Iw=0,000Iyz=0,000h=0,120Wpl,yy=9,925E-05Av,y=0,001E=2100000000,0fy=355000,000fu=510000,000Wpl,zz=9,925E-05Av,z=0,001 STRESS CHECK FORCES & MOMENTS Location Ned
 Med, yy
 Med, zz
 Ved, z
 Ved, y
 Ted

 -24,259
 0,000
 -10,404
 0,030
 0,299
 0,000 63,651 PMM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.2.1(7)) D/C Ratio: 0,843 = 0,086 + 0,757 + 0,000 < 0,950 OK = (NEd/NRd) + (My,Ed/My,Rd) + (Mz,Ed/Mz,Rd) (EC3 6.2.1(7)) BASIC FACTORS
 Buckling Mode
 K Factor
 L Factor
 Lcr/i

 Major (y-y)
 1,000
 1,000
 86,338

 Major Braced
 1,000
 1,000
 86,338

 Minor (z-z)
 1,000
 1,000
 86,338

 Minor Braced
 1,000
 1,000
 86,338

 LTB
 1,000
 1,000
 86,338
 AXIAL FORCE DESIGN Ned Nc, Rd Nt, Rd Force Capacity Capacity 63,651 742,273 742,273 Axial
 Npl,Rd
 Nu,Rd
 Ncr,T
 Ncr,TF
 An/Ag

 742,273
 844,560
 139064,042
 639,510
 1,000
 CurveAlphaNcrLambdaBarPhiChiNb,RdMajor (y-y)c0,490639,5101,1301,3660,469347,801MajorB(y-y)c0,490639,5101,1301,3660,469347,801Minor (z-z)c0,490639,5101,1301,3660,469347,801MinorB(z-z)c0,490639,5101,1301,3660,469347,801Torsional TFc0,490639,5101,1301,3660,469347,801

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

15.1.1.8 Horizontal floor beams

Design is governed by service vehicle as expected.

Eurocode 3-2005 STEEL SECTION CHECK (Flexural Details for Combo and Station) Units : KN, m, C
 Frame : HO_87
 X Mid: 51,571
 Combo: ULS_07_150
 Design Type: Beam

 Length: 3,500
 Y Mid: 1,750
 Shape: HO_END_120X120X5
 Frame Type: DCH-MRF

 Loc
 : 0,000
 Z Mid: 0,000
 Class: Class 1
 Rolled : No
 Country=CEN Default Combination=Eq. 6.10 Reliability=Class 2 Interaction=Method 2 (Annex B) MultiResponse=Envelopes P-Delta Done? No Consider Torsion? No GammaM0=1,10 GammaM1=1,10 GammaM2=1,25 An/Ag=1,00 RLLF=1,000 PLLF=0,750 D/C Lim=0,950 Aeff=0,002eNy=0,000eNz=0,000A=0,002Iyy=5,079E-06iyy=0,047Wel,yy=8,465E-05Weff,yy=8,465E-05It=7,604E-06Izz=5,079E-06izz=0,047Wel,zz=8,465E-05Weff,zz=8,465E-05Iw=0,000Iyz=0,000h=0,120Wpl,yy=9,925E-05Av,y=0,001E=210000000,0fy=355000,000fu=510000,000Wpl,zz=9,925E-05Av,z=0,001 STRESS CHECK FORCES & MOMENTS
 Ned
 Med, yy
 Med, zz
 Ved, z
 Ved, y
 Ted

 -105,030
 -24,595
 -0,607
 -28,495
 -0,397
 1,005
 Location 0,000 PMM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.2.1(7)) 0,950 = 0,141 + 0,768 + 0,019 < 0,950 OK = (NEd/NRd) + (My,Ed/My,Rd) + (Mz,Ed/Mz,Rd) (EC3 6.2.1(7)) D/C Ratio: 0,928 = 0,141 + 0,768 + 0,019 < BASIC FACTORS
 Buckling Mode
 K Factor
 L Factor
 Lcr/i

 Major (y-y)
 1,000
 1,000
 74,479

 Major Braced
 1,000
 1,000
 74,479

 Minor (z-z)
 1,000
 1,000
 74,479

 Minor Braced
 1,000
 1,000
 74,479

 LTB
 1,000
 1,000
 74,479
 AXIAL FORCE DESIGN . Ned Nc,Rd Nt,Rd Force Capacity Capacity -105,030 742,273 742,273 Axial
 Npl,Rd
 Nu,Rd
 Ncr,T
 Ncr,TF
 An/Ag

 742,273
 844,560
 139064,042
 859,361
 1,000
 1,000 CurveAlphaNcrLambdaBarPhiChiNb, RdMajor (y-y)c0,490859,3610,9751,1650,555411,758MajorB(y-y)c0,490859,3610,9751,1650,555411,758Minor (z-z)c0,490859,3610,9751,1650,555411,758MinorB(z-z)c0,490859,3610,9751,1650,555411,758MinorB(z-z)c0,490859,3610,9751,1650,555411,758Torsional TFc0,490859,3610,9751,1650,555411,758

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

15.2 SERVICEABILITY LIMIT STATE VERIFICATIONS

15.2.1 Displacements

There are two criteria limiting the maximum displacement. The distances to the road and the train need to be kept. The distances to the train need to be kept in the frequent combination. The closest distance in the frequent combination is 1,64m:

Figure 15-2: Minimum clearance for the almost permanent deformed shape

The other limit is for the almost permanent combination and is the bridge span divided by 350. This results in the following limit:

 $\frac{50,5 \text{ m}}{350} = 144,2857 \text{ mm}$

The displacements even for the characteristic combination (worse than both frequent and almost permanent) are much smaller. The largest 3 displacements in mm are:

TABLE: Joint Displacements (mm)				
Joint	Output Case	U1	U2	U3
UN_H_38	SLSR_07_74	10,3	-36,9	-82,3
UN_H_50	SLSR_07_74	13,3	-37,0	-82,3
UN_H_38	SLSR_07_98	4,2	38,8	-82,1

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

15.2.2 Stress limits

For the characteristic SLS combination of actions, the criteria given in cl. 7.2.2(5), NS-EN 1994-2 which refers to cl. 7.3, NS-EN 1993-2, for the normal and shear stresses in the structural steel should be verified:

$$\begin{split} \sigma_{\rm Ed,ser} &\leq \frac{f_{\rm y}}{\gamma_{\rm M,ser}} \\ \tau_{\rm Ed,ser} &\leq \frac{f_{\rm y}}{\sqrt{3}.\gamma_{\rm M,ser}} \\ \sqrt{\sigma_{\rm Ed,ser}^{2} + 3\tau_{\rm Ed,ser}^{2}} &\leq \frac{f_{\rm y}}{\gamma_{\rm M,ser}} \end{split}$$

Bending stresses are obtained from SAP2000 directly. This can result in conservative estimates as SAP2000 assumes that both the maximum longitudinal, vertical shear and horizontal shear tension happen simultaneously.

For the worst case, stresses are below 266MPa, comfortably below the limit.

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

Figure 15-3: Maximum Von Mises stresses for characteristic SLS

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

15.3 JOINT DESIGN

Joints have been designed with hand calculations according to the criteria in NS-EN 1993-1-8.

All joints show enough capacity.

Placement	Joint type	Design criterion	Actual value	Resisted value
Main truss lower	K joint overlap	Axial force	631 kN	1263 kN
Main truss lower	T joint	M out of plane	3,7	76
Main truss upper	K joint overlap	Axial force	1214 kN	1320 kN
Main truss upper	T joint	M out of plane	3,6	49
Lower horizontals	T joint	M out of plane	29,5 kN·m	47,1 kN∙m
Upper wind truss (horizontal)	K joint gap	Axial force	118 kN	888 kN
Upper wind truss (horizontal	T joint	M out of plane	28,3	40,6
Upper wind truss (diagonal)	K joint gap	Axial force	191 kN	1776 kN
Upper wind truss (diagonal)	T joint	M out of plane	8,3	40,6

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

Lower chord central part overlap

According to NS-EN 1993-1-8 Table 7.10

 $f_y := 355 \text{ MPa}$ $\gamma_{M1} := 1, 1$

25 %

 $Y_{M5} := 1, 0$

$b_0 := 200 \text{ mm}$	$b_1 := 200 \text{ mm}$	$b_2 \coloneqq 200 \text{ mm}$	$\lambda_{ov} :=$
$h_0 := 200 \text{ mm}$	$h_1 := 100 \text{ mm}$	$h_2 := 100 \text{ mm}$	
$t_0 := 14 \text{ mm}$	$t_1 := 10 \text{ mm}$	$t_2 := 10 \text{ mm}$	
	$\theta_1 \coloneqq 90 \deg$	$\theta_2 \coloneqq 30 \deg$	

$$\begin{split} b_{eff} &:= \min\left[\left[\frac{10}{b_0} \cdot \frac{t_0}{t_2} \cdot b_2 \right]_{b_2}\right] = 0,196 \text{ m} \qquad b_{e,ov} := \min\left[\left[\frac{10}{b_1} \cdot \frac{t_1}{t_2} \cdot b_2 \right]_{b_2}\right] = 0,1 \text{ m} \\ N_{iRd} &:= f_y \cdot t_2 \cdot \left[b_{eff} + b_{e,ov} + 2 \cdot h_2 \cdot \min\left[\left[\frac{\lambda_{ov}}{50 \ \%} \ 1\right]\right] - 4 \cdot t_2\right] \cdot \frac{1}{Y_{M5}} = 1263,8 \text{ kN} \qquad N_{2,Ed} := 631 \text{ kN} \\ \frac{N_{2,Ed}}{N_{iRd}} &= 0,4993 \end{split}$$

Revision	Dato	Utf.	Kontr.	Godki.
netisjen	5410			eesi.j.
04	30-01-2024	FA	FI	BO

Out of plane moment

$$\begin{split} ^{M_{op,Rd,1}} &\coloneqq \text{if } \beta \leq 0,85 \\ &k_n \cdot f_y \cdot t_0^{-2} \cdot \left(\frac{h_1 \cdot (1+\beta)}{2 \cdot (1-\beta)} + \sqrt{\frac{2 \cdot b_0 \cdot b_1 \cdot (1+\beta)}{1-\beta}}\right) \cdot \frac{1}{Y_{M5}} \\ &\text{else} \\ &f_y \cdot t_0 \cdot (b_0 - t_0) \cdot (h_1 + 5 \cdot t) \cdot \frac{1}{Y_{M5}} \end{split}$$

$$M_{op,Rd,2} := 2 \cdot f_{y} \cdot t_{0} \cdot \left(h_{1} \cdot t_{0} + \sqrt{b_{0} \cdot h_{0} \cdot t_{0} \cdot \left(b_{0} + h_{0}\right)}\right) \cdot \frac{1}{Y_{M5}}$$

$$\begin{split} M_{op,Rd,3} &:= & \text{if } \beta \leq 0,85 \\ & 10000 \text{ MN m} \\ & \text{else} \\ & f_{y} \cdot \left(W_{p1,1} - 0,5 \cdot \left(1 - \frac{b_{eff}}{b_{1}} \right)^{2} \cdot b_{1}^{-2} \cdot t_{1} \right) \cdot \frac{1}{Y_{M5}} \end{split}$$

 $M_{op,Rd} := \min\left(\left[\begin{array}{cc} M_{op,Rd,1} & M_{op,Rd,2} & M_{op,Rd,3} \end{array}\right]\right) = 76,4219 \text{ kN m}$

 $M_{Ed} := 3,7 \text{ kN m}$

$$\frac{M_{Ed}}{M_{op,Rd}} = 0,0484 \qquad \qquad \frac{N_{2,Ed}}{N_{iRd}} + \frac{M_{Ed}}{M_{op,Rd}} = 0,5477$$

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

Upper chord overlap

According to NS-EN 1993-1-8 Table 7.10

f_y := 355 MPa

 $Y_{M1} := 1, 1$

 $Y_{M5} := 1, 0$

$b_0 := 350 \text{ mm}$	$b_1 := 200 \text{ mm}$	$b_2 := 200 \text{ mm}$	$\lambda_{ov} := 50$ %
$h_o := 250 \text{ mm}$	$h_1 := 200 \text{ mm}$	$\boldsymbol{h}_2 \coloneqq 100 \text{ mm}$	
$t_o := 14 \text{ mm}$	$t_1 := 10 \text{ mm}$	$t_2 := 10 \text{ mm}$	
	$\theta_1 := 90 \deg$	$\theta_2 \coloneqq 30 \deg$	

$$\begin{split} b_{eff} &:= \min\left[\left[\frac{10}{b_0} \cdot \frac{t_0}{t_2} \cdot b_2 \ b_2\right]\right] = 0,112 \text{ m} \qquad b_{e,ov} := \min\left[\left[\frac{10}{b_1} \cdot \frac{t_1}{t_2} \cdot b_2 \ b_2\right]\right] = 0,1 \text{ m} \\ N_{iRd} &:= f_y \cdot t_2 \cdot \left[b_{eff} + b_{e,ov} + 2 \cdot h_2 \cdot \min\left[\left[\frac{\lambda_{ov}}{50 \ \$} \ 1\right]\right] - 4 \cdot t_2\right] \cdot \frac{1}{Y_{M5}} = 1320,6 \text{ kN} \qquad N_{2,Ed} := 1214 \text{ kN} \\ \frac{N_{2,Ed}}{N_{iRd}} &= 0,9193 \end{split}$$
Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

Out of plane moment

$b_0 \coloneqq 350 \text{ mm}$	$b_1 := 200 \text{ mm}$
$h_0 \coloneqq 250 \text{ mm}$	$h_1 \coloneqq 100 \text{ mm}$
$t_0 := 14 \text{ mm}$	$t_1 \coloneqq 10 \text{ mm}$

 $f_y := 355 \text{ MPa}$

 $N_{Ed,0} := 1211 \text{ kN}$

 $Y_{M1} := 1, 1$

 $\gamma_{M5} := 1, 0$

$$\begin{split} M_{op,Rd,1} &:= \text{if } \beta \leq 0,85 \\ k_n \cdot f_y \cdot t_0^{-2} \cdot \left(\frac{h_1 \cdot (1+\beta)}{2 \cdot (1-\beta)} + \sqrt{\frac{2 \cdot b_0 \cdot b_1 \cdot (1+\beta)}{1-\beta}}\right) \cdot \frac{1}{Y_{M5}} \\ &\text{else} \\ f_y \cdot t_0 \cdot \left(b_0 - t_0\right) \cdot \left(h_1 + 5 \cdot t\right) \cdot \frac{1}{Y_{M5}} \end{split}$$

$$M_{op,Rd,2} \coloneqq 2 \cdot f_{y} \cdot t_{0} \cdot \left(h_{1} \cdot t_{0} + \sqrt{b_{0} \cdot h_{0} \cdot t_{0} \cdot \left(b_{0} + h_{0}\right)}\right) \cdot \frac{1}{Y_{M5}}$$

$$\begin{split} ^{M_{op,Rd,3}} &:= & \text{if } \beta \leq 0,85 \\ & 10000 \text{ MN m} \\ & \text{else} \\ & f_{y} \cdot \left(W_{pl,1} - 0, 5 \cdot \left(1 - \frac{b_{eff}}{b_{1}} \right)^{2} \cdot b_{1}^{-2} \cdot t_{1} \right) \cdot \frac{1}{Y_{M5}} \end{split}$$

 $M_{op,Rd} := \min\left(\left[\begin{array}{cc} M_{op,Rd,1} & M_{op,Rd,2} & M_{op,Rd,3} \end{array}\right]\right) = 49,8616 \text{ kN m}$

 $M_{Ed} := 3, 6 \text{ kN m}$

$$\frac{M_{Ed}}{M_{op,Rd}} = 0,0722 \qquad \qquad \frac{N_{2,Ed}}{N_{iRd}} + \frac{M_{Ed}}{M_{op,Rd}} = 0,9915$$

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

Wind bracing

According to NS-EN 1993-1-8 Table 7.10

$b_0 := 250 \text{ mm}$	$b_1 := 120 \text{ mm}$	$b_2 := 120 \text{ mm}$
$h_0 := 350 \text{ mm}$	$h_1 := 120 \text{ mm}$	$h_2 := 120 \ \mathrm{mm}$
$t_0 := 14 \text{ mm}$	$t_1 := 5 \text{ mm}$	$t_2 := 5 \text{ mm}$
	$\theta_1 := 90 \deg$	$\theta_2 \coloneqq 30 \deg$

 $A_{0} := 2 \cdot (h_{0} + b_{0}) \cdot t_{0} \qquad \beta := \frac{b_{1} + b_{2} + h_{1} + h_{2}}{4 \cdot b_{0}} = 0,48 \quad \text{Gap limits:} \quad 0,5 \cdot (1 - \beta) \cdot b_{0} = 65 \text{ mm}$ $\sigma_{Ed} := \frac{-N_{Ed,0}}{A_{0}} \qquad 1,5 \cdot (1 - \beta) \cdot b_{0} = 195 \text{ mm}$

$$n := \frac{\sigma_{Ed}}{f_y} = 0,198$$

$$\gamma := \frac{b_0}{2 \cdot t_0} = 8,9286$$

$$k_n := \text{if } n > 0 = 1$$

$$\min\left[\left[1, 3 - \frac{0, 4 \cdot n}{\beta} \right]\right]$$
else
1

$$N_{1,Rd} := \frac{8,9 \cdot \gamma^{0,5} \cdot k_n \cdot f_y \cdot t_0^2}{\sin(\theta_1)} \cdot \left(\frac{b_1 + b_2}{2 \cdot b_0}\right) \cdot \frac{1}{Y_{M5}} = 888,1916 \text{ kN} \qquad N_{1,Ed} := 118 \text{ kN}$$
$$N_{2,Rd} := \frac{8,9 \cdot \gamma^{0,5} \cdot k_n \cdot f_y \cdot t_0^2}{\sin(\theta_2)} \cdot \left(\frac{b_1 + b_2}{2 \cdot b_0}\right) \cdot \frac{1}{Y_{M5}} = 1776,3832 \text{ kN} \qquad N_{2,Ed} := 191 \text{ kN}$$

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

Out of plane moment

$b_0 := 250 \text{ mm}$	$b_1 := 120 \text{ mm}$
$h_0 \coloneqq 350 \text{ mm}$	$h_1 := 120 \text{ mm}$
$t_0 := 14 \text{ mm}$	$t_1 := 5 \text{ mm}$

 $f_{v} := 355 \text{ MPa}$

 $N_{Ed,0} := 134 \text{ kN}$ $Y_{M1} := 1, 1$ $Y_{M5} := 1, 0$

$$\begin{split} M_{op,Rd,1} &:= \text{if } \beta \leq 0,85 \\ k_n \cdot f_y \cdot t_0^{-2} \cdot \left(\frac{h_1 \cdot (1+\beta)}{2 \cdot (1-\beta)} + \sqrt{\frac{2 \cdot b_0 \cdot b_1 \cdot (1+\beta)}{1-\beta}}\right) \cdot \frac{1}{Y_{M5}} \\ &\text{else} \\ f_y \cdot t_0 \cdot \left(b_0 - t_0\right) \cdot \left(h_1 + 5 \cdot t\right) \cdot \frac{1}{Y_{M5}} \end{split}$$

$$\begin{split} M_{op,Rd,2} &\coloneqq 2 \cdot f_{y} \cdot t_{0} \cdot \left(h_{1} \cdot t_{0} + \sqrt{b_{0} \cdot h_{0} \cdot t_{0} \cdot \left(b_{0} + h_{0}\right)}\right) \cdot \frac{1}{Y_{M5}} \\ M_{op,Rd,3} &\coloneqq \text{if } \beta \leq 0,85 \\ 10000 \text{ MN m} \\ \text{else} \end{split}$$

$$f_{y} \cdot \left(W_{pl,l} - 0, 5 \cdot \left(1 - \frac{b_{eff}}{b_{l}} \right)^{2} \cdot b_{l}^{2} \cdot t_{l} \right) \cdot \frac{1}{Y_{M5}}$$

 $M_{op,Rd} := \min\left(\left[\begin{array}{cc} M_{op,Rd,1} & M_{op,Rd,2} & M_{op,Rd,3} \end{array}\right]\right) = 40,6355 \text{ kN m}$

 $M_{Ed} := 28$, 3 kN m

$$\frac{M_{Ed}}{M_{op,Rd}} = 0,6964 \qquad \qquad \frac{N_{2,Ed}}{N_{iRd}} + \frac{M_{Ed}}{M_{op,Rd}} = 0,8411$$

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

Floor joints

$b_0 := 200 \text{ mm}$	$b_1 := 120 \text{ mm}$
$h_0 \coloneqq 200 \text{ mm}$	$h_1 := 120 \text{ mm}$
$t_o := 14 \text{ mm}$	$t_1 := 5 \text{ mm}$

 $f_v := 355 \text{ MPa}$

 $N_{Ed,0} := 1000 \text{ kN}$

 $Y_{M1} := 1, 1$ $Y_{M5} := 1, 0$

$$\begin{split} ^{M_{op,Rd,l}} &:= \text{if } \beta \leq 0,85 \\ & k_{n} \cdot f_{y} \cdot t_{0}^{-2} \cdot \left(\frac{h_{l} \cdot (1+\beta)}{2 \cdot (1-\beta)} + \sqrt{\frac{2 \cdot b_{0} \cdot b_{l} \cdot (1+\beta)}{1-\beta}}\right) \cdot \frac{1}{Y_{M5}} \\ & \text{else} \\ & f_{y} \cdot t_{0} \cdot \left(b_{0} - t_{0}\right) \cdot \left(h_{1} + 5 \cdot t\right) \cdot \frac{1}{Y_{M5}} \end{split}$$

$$M_{op,Rd,2} \coloneqq 2 \cdot f_{y} \cdot t_{0} \cdot \left(h_{1} \cdot t_{0} + \sqrt{b_{0} \cdot h_{0} \cdot t_{0} \cdot \left(b_{0} + h_{0}\right)}\right) \cdot \frac{1}{Y_{M5}}$$

 $\begin{array}{c} \textit{M}_{op,\textit{Rd},3} \coloneqq \inf \begin{array}{c} \beta \leq 0,85 \\ 10000 \text{ MN m} \\ \text{else} \end{array}$ $f_{y} \cdot \left(W_{pl,l} - 0, 5 \cdot \left(1 - \frac{b_{eff}}{b_{l}} \right)^{2} \cdot b_{l}^{2} \cdot t_{l} \right) \cdot \frac{1}{Y_{M5}}$

 $M_{op,Rd} := \min\left(\left[\begin{array}{cc} M_{op,Rd,1} & M_{op,Rd,2} & M_{op,Rd,3} \end{array}\right]\right) = 47,1876 \text{ kN m}$

 $M_{Ed} := 28, 3 \text{ kN m}$

 $\frac{M_{Ed}}{M_{op,Rd}} = 0,5997$

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

15.4 BOTTOM STEEL PLATE

In order to verify the results from the FE model, hand calculations were performed first. The plate will be somewhere between simply supported and clamped, the formulae for that configuration considering the plate geometry are:

$$\frac{1,39\cdot 1,35\cdot P}{t^2} = 315,1934 \text{ MPa} \qquad \qquad \frac{1,008\cdot P\cdot 1,35}{t^2} = 228,5719 \text{ MPa}$$

So the stresses from the SAP2000 model should be in that range.

In order to calculate the plate with a load in the middle, the plate of the global model was divided in 4 subplates, this was done previously to the meshing to guarantee that the force was being transferred properly.

Figure 15-4: Plate analytical model.

The cases shown to be the most critical include the point load at three different locations:

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Figure 15-5: Plate force locations.

The most critical case was the one with the load centered in the first plate showing the following Von Mises stresses at ULS (1,35 dead loads+1,35 traffic)

Figure 15-6: Largest Von Mises stresses at the plate.

The stresses of 307Mpa are within the range given in the hand calculations and considered valid. Even with the conservative approach of a point load the stresses are within limits.

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

16 VEDLEGG 7 – CONCRETE DESIGN VERIFICATIONS

Abutments are designed to be symmetrical. The analysis presented here is therefore for both axes. The case with the highest load is always picked for design.

Figure 16-1: Abutment model with reinforcement.

16.1 ABUTMENT WALL

The minimum reinforcement is satisfied with 20mm rebars at 150mm distance.

Abutment wall

 $A_{c} := 1450 \text{ mm}$

$$A_{sVmin} \coloneqq 0,002 \cdot A_c = 29 \frac{\mathrm{cm}^2}{\mathrm{m}}$$

$$A_{sv} := 2 \cdot \frac{\frac{\mathbf{\pi} \cdot (20 \text{ mm})^2}{4}}{150 \text{ mm}} = 41,8879 \frac{\text{cm}^2}{\text{m}}$$

 $\frac{A_{sVmin}}{A_{sV}} = 0,6923$

$$A_{sHmin} := 0, 3 \cdot A_c \cdot \frac{f_{ctm}}{f_{yk}} = 33,0204 \frac{\text{cm}^2}{\text{m}}$$

$$A_{sH} := 2 \cdot \frac{\frac{\mathbf{n} \cdot (20 \text{ mm})^2}{4}}{150 \text{ mm}} = 41,8879 \frac{\text{cm}^2}{\text{m}}$$

$$\frac{A_{sHmin}}{A_{sH}} = 0,7883$$

NS EN 1992-1-1 NA.9.6.2

NS EN 1992-1-1 NA.9.6.3

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

16.1.1 Strut and tie model

Based on the loads applied and the expected stress distribution, we created a model with both abutments. The stiff connection between both sides of the abutment is expected to take horizontal loads. This is modelled as a stiff connection. We also placed specific reinforcement to take that force.

Earth pressure is 27kN and therefore an order of magnitude smaller. It can be neglected if we are not too close to 100% utilization.

Several load cases were attempte with both models. Below we show one with both vertical, longitudinal and transversal forces and earth pressure.

Figure 16-3: Strut and tie models with the actual reinforcement.

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

Figure 16-4: Strut and tie analytical model.

The following results were obtained.

Strut	Max load kN	Tie	Max load kN
Upper pyramid	331.5	Vertical	111.7
Lower vertical	303.7	Upper horizontal	132.1
Lower diagonal	94.2	Lower horizontal	0.2

The minimum area needs are:

Strut	Side (mm)	Tie	Rebar
Upper pyramid	120	Vertical	1Ø20
Lower vertical	110	Upper horizontal	2ø16
Lower diagonal	60	Lower horizontal	-

All the minimum strut dimensions are comfortably reached just considering the concrete cover (75mm to one side).

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

16.1.2 Bearing local reinforcement

The bearing will be designed locally according to horizontal forces and splitting. Cracking stress is also to be considered when designing reinforcement to resist horizontal forces in serviceability limit state.

Input

 $\gamma_c \coloneqq 25 \frac{kN}{m^3}$ $\gamma_{soil} \coloneqq 19 \frac{kN}{m^3}$ $f_{ck} \coloneqq 45 \text{ MPa}$ $f_{yk} \coloneqq 500 \text{ MPa}$ $f_{cd} := \frac{0,85 \cdot f_{ck}}{1,5}$ $f_{yd} := \frac{f_{yk}}{1,15}$ $\sigma_s := 200 \text{ MPa}$ $R_{ULS} \coloneqq 600 \text{ kN}$ From FE model, rounded up $R_{SLS} := 450 \text{ kN}$ $A_{up} := \frac{R_{ULS}}{f_{ck}}$ $D := \sqrt{A_{up}} = 115,4701 \text{ mm}$ Minimum possible support dimension (conservative) $B := 550 \text{ mm} \qquad \qquad A_{lo} := \frac{\mathbf{\pi} \cdot B^2}{4}$

B = D = 0,4345 m

Horizontal forces

 $F_{HULS} := 300 \text{ kN}$

 $F_{HSLS} := 200 \text{ kN}$

$$A_{ULS} := \frac{F_{HULS}}{f_{yd}} = 6,9 \text{ cm}^2 \qquad A_{SLS} := \frac{F_{HSLS}}{\sigma_s} = 10 \text{ cm}^2$$
$$A_s := 2 \cdot \left(\mathbf{n} \cdot \frac{(16 \text{ mm})^2}{4}\right) + 2 \cdot \left(\mathbf{n} \cdot \frac{(25 \text{ mm})^2}{4}\right) = 13,8387 \text{ cm}^2$$
$$\frac{A_{ULS}}{A} = 0,4986 \qquad \frac{A_{SLS}}{A} = 0,7226$$

$$\frac{A_{SLS}}{A_{S}} = 0,4986$$
 $\frac{A_{SLS}}{A_{S}} = 0,7226$

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

Spliting

NS EN 1992 -1 -1 6.7

$$\begin{aligned} A_{up} \cdot f_{cd} \cdot \sqrt{\frac{A_{lo}}{A_{up}}} &= 1435,2157 \text{ kN} \\ F_{Rdu} &:= \min\left(\left[A_{up} \cdot f_{cd} \cdot \sqrt{\frac{A_{lo}}{A_{up}}} 3 \cdot f_{cd} \cdot A_{up} \right] \right] = 1020 \text{ kN} \end{aligned}$$

$$\frac{R_{ULS}}{F_{Rdu}} = 0,5882$$

Transverse tie NS EN 1992 -1 -1 6.5.3

$$T_{ULS} := \frac{1}{4} \cdot \frac{B - D}{B} \cdot R_{ULS} = 118,5082 \text{ kN}$$

$$A_{ULS} := \frac{T_{ULS}}{f_{yd}} = 2,7257 \text{ cm}^2$$

$$T_{SLS} := \frac{1}{4} \cdot \frac{B - D}{B} \cdot R_{SLS} = 88,8811 \text{ kN}$$
$$A_{SLS} := \frac{T_{SLS}}{\sigma_s} = 4,4441 \text{ cm}^2$$

$$A_s := 2 \cdot \left(\mathbf{\pi} \cdot \frac{(20 \text{ mm})^2}{4} \right) = 6,2832 \text{ cm}^2$$

20 bars at 150, minimum 2 bars intersected

$$\frac{A_{ULS}}{A_s} = 0,4338$$

$$\frac{A_{SLS}}{A_{S}} = 0,7073$$

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	ВО

16.1.3 Jacking point local reinforcement

The jacking point is designed to take only vertical forces.

Input

$$\begin{split} & \gamma_{C} \coloneqq 25 \ \frac{\text{kN}}{\text{m}} & \gamma_{soil} \coloneqq 19 \ \frac{\text{kN}}{\text{m}^{3}} & f_{ck} \coloneqq 45 \text{ MPa} & f_{yk} \coloneqq 500 \text{ MPa} \\ & f_{cd} \coloneqq \frac{0,85 \cdot f_{ck}}{1,5} & f_{yd} \coloneqq \frac{f_{yk}}{1,15} \\ & R_{SLS} \coloneqq 132 \text{ kN} + 72 \text{ kN} = 204 \text{ kN} & R_{ULS} \coloneqq 1,35 \cdot 132 \text{ kN} + 1,6 \cdot 72 \text{ kN} = 293,4 \text{ kN} \end{split}$$

$$A_{up} := \frac{R_{ULS}}{f_{ck}} \qquad D := \sqrt{\frac{4 \cdot A_{up}}{\pi}} = 91,1127 \text{ mm} \qquad \text{Minimum possible jack diameter} \\ B := 400 \text{ mm} \qquad A_{Io} := \frac{\pi \cdot B^2}{4} \qquad B - D = 0,3089 \text{ m}$$

Verification NS EN 1992 -1 -1 6.7

$$\begin{split} A_{up} \cdot f_{cd} \cdot \sqrt{\frac{A_{lo}}{A_{up}}} &= 729,9093 \text{ kN} \\ F_{Rdu} \coloneqq \min\left(\left[A_{up} \cdot f_{cd} \cdot \sqrt{\frac{A_{lo}}{A_{up}}} 3 \cdot f_{cd} \cdot A_{up} \right] \right] &= 498,78 \text{ kN} \\ \\ \frac{R_{ULS}}{F_{Rdu}} &= 0,5882 \end{split}$$

Transverse tie NS EN 1992 -1 -1 6.5.3

 $\frac{A_{ULS}}{A_s} = 0,6479$

$$T_{ULS} := \frac{1}{4} \cdot \frac{B - D}{B} \cdot R_{ULS} = 56,6422 \text{ kN}$$

$$T_{SLS} := \frac{1}{4} \cdot \frac{B - D}{B} \cdot R_{SLS} = 39,3831 \text{ kN}$$

$$A_{ULS} := \frac{T_{ULS}}{f_{yd}} = 1,3028 \text{ cm}^2$$

$$A_{SLS} := \frac{T_{SLS}}{f_{yd}} = 0,9058 \text{ cm}^2$$

$$A_s := 1 \cdot \left(\pi \cdot \frac{(16 \text{ mm})^2}{4} \right) = 2,0106 \text{ cm}^2$$
Ø16 bars at 150, minimum 2 bars intersected

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	ВО

16.2 ABUTMENT WINGS

The minimum reinforcement on the wings is 16 rebars at 150mm:

$A_c := 500 \text{ mm}$	h := 500 mm	
$\sigma_s \coloneqq 200 \text{ MPa}$	$\phi_{sp} \coloneqq 32 \text{ mm}$	NS EN 1992-1-1 Table 7.2N
$A_{sVmin} \coloneqq 0,002 \cdot A_c = 10 \frac{\mathrm{cm}^2}{\mathrm{m}}$		NS EN 1992-1-1 NA.9.6.2
$A_{sHmin} := 0, 3 \cdot A_c \cdot \frac{f_{ctm}}{f_{yk}} = 11,386$	$63 \frac{\text{cm}^2}{\text{m}}$	NS EN 1992-1-1 NA.9.6.3
$d := h - c - \frac{\phi}{2} = 0$, 417 m		
$W_{max} := 0,375 \text{ mm}$		Reference Design Basis
$h_{cr} := 0, 5 \cdot h$		NS EN 1992-1-1 7.3.2
<i>k</i> := 0,65		
$k_{_{C}} := 0, 4$		
$A_{s,\min,cr} \coloneqq \frac{k_c \cdot k \cdot f_{ctm} \cdot \frac{h}{2}}{\sigma_s} = 12$, 3352 $\frac{cm^2}{m}$	
$\phi_s \coloneqq \phi_{sp} \cdot \left(\frac{f_{ct,eff}}{2,9 \text{ MPa}}\right) \cdot \frac{k_c \cdot h_{cr}}{2 \cdot (h-d)}$	= 25, 23 mm	NS EN 1992-1-1 (7.6N)
$A_{s} := \frac{\frac{\mathbf{\pi} \cdot (16 \text{ mm})^{2}}{4}}{150 \text{ mm}} = 13,4041 \frac{\text{cm}}{\text{m}}$	2	
$\frac{\max\left(\left[\begin{smallmatrix}A_{s,min,cr} & A_{sVmin} & A_{sHmin}\end{smallmatrix}\right]\right)}{A_{s}}$	-=0,9203 Ok	

Due to the low forces on the wings, the minimum reinforcement is sufficient as shown in the following calculations.

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	ВО

Wings reinforcement calculation

Reference: NS-EN 1992-1-1

Input data

$f_{yk} := 500 \text{ MPa}$	f _{ck} := 45 MPa
$f_{yd} := \frac{f_{yk}}{1,15} = 434,7826 \text{ MPa}$	$f_{cd} \coloneqq \frac{0,85 \cdot f_{ck}}{1,5} = 25,5 \text{ MPa}$

 $\sigma_{_S} \coloneqq 200 \text{ MPa}$

h := 1,81 m	L := 1,94 m	t := 500 mm	Height and length
$Y_{earth} := 19 \frac{kN}{m^3}$			Reference Design Basis
c := 75 mm			Reference Design Basis
$K_0 := 0, 5$			Reference Design Basis
$\phi := 16 \text{ mm}$			
$d := t - c - \frac{\phi}{2} = 0$,417 m		

<u>Loads</u>

$q_{fk} \coloneqq 5 \frac{\mathrm{kN}}{\mathrm{m}^2}$		Reference Design Basis
$q_{Gtop} := 0 = 0 \text{ kPa}$	$q_{Gbot} \coloneqq K_0 \cdot \gamma_{earth} \cdot h = 17,195 \text{ kPa}$	Earth loads
$q_{Qtop} \coloneqq q_{fk} \cdot K_0 = 2,5 \text{ kP}$	a $q_{\text{Qbot}} \coloneqq q_{fk} \cdot K_0 = 2,5 \text{ kPa}$	Traffic loads

<u>Moment design</u>

$$\begin{split} & q_{Gtop} + 1,35 \cdot q_{Qtop} = 3375 \text{ Pa} \\ & M_{SLS} \coloneqq 0, 5 \cdot \left(q_{Gbot} + 0, 5 \cdot q_{Qbot}\right) \cdot h^2 = 30,2138 \frac{\text{kN m}}{\text{m}} \\ & M_{ULS} \coloneqq 0, 5 \cdot \left(q_{Gbot} + 1,35 \cdot q_{Qbot}\right) \cdot h^2 = 33,6947 \frac{\text{kN m}}{\text{m}} \\ & A_{SLSbot} \coloneqq \frac{M_{SLS}}{0,9 \cdot \sigma_s \cdot d} = 4,0253 \frac{\text{cm}^2}{\text{m}} \end{split}$$

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

04 30-01-2024 FA FI BO	Revisjon	Dato	Utf.	Kontr.	Godkj.
	04	30-01-2024	FA	FI	BO

$$A_{ULSbot} := \frac{M_{ULS}}{0, 9 \cdot f_{yd} \cdot d} = 2,065 \frac{\text{cm}^2}{\text{m}}$$

$$A_s := \frac{\mathbf{\pi} \cdot (16 \text{ mm})^2}{4} = 13,4041 \frac{\text{cm}^2}{\text{m}}$$

$$\frac{A_{SLSbot}}{A_s} = 0,3003$$

$$\frac{A_{ULSbot}}{A_s} = 0,1541$$

<u>Shear design</u>

$$\begin{split} V_{ULS} &\coloneqq \left(q_{Gbot} + 1,35 \cdot q_{Qbot} \right) \cdot h = 37,2317 \frac{\text{kN}}{\text{m}} \\ k_2 &\coloneqq 0,18 \qquad \alpha \coloneqq 90 \text{ deg} \\ C_{Rdc} &\coloneqq \frac{k_2}{1,5} = 0,12 \qquad \rho \coloneqq \min\left(\left[\frac{A_s}{d} \ 0,02 \right] \right) = 0,0032 \qquad k \coloneqq \min\left(\left[1 + \sqrt{\frac{200 \text{ mm}}{d}} \ 2 \right] \right) = 1,6925 \\ v_{min} &\coloneqq 0,035 \cdot k^{\frac{3}{2}} \cdot \sqrt{f_{ck} \text{ MPa}} = 0,517 \text{ MPa} \qquad v_{Rdc} \coloneqq C_{Rdc} \cdot k \cdot \left(100 \cdot \rho \cdot f_{ck} \text{ MPa}^2 \right)^{\frac{1}{3}} = 0,4949 \text{ MPa} \\ V_{Rdc} &\coloneqq \max\left(\left[v_{min} \ v_{Rdc} \right] \right) \cdot d = 215,5858 \frac{\text{kN}}{\text{m}} \\ \frac{V_{ULS}}{V_{Rdc}} &= 0,1727 \end{split}$$

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

NS EN 1992-1-1 7.3.2

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	ВО

16.3 FOOTING

16.3.1 Minimum reinforcement

Foundation slab

h := 700 mm

$\sigma_{_{\mathcal{S}}}\coloneqq 200 \text{ MPa}$	$\phi_{_{SP}}:=32~\mathrm{mm}$	NS EN 1992-1-1 Table 7.2N
$d := h - c - \frac{\phi}{2} = 0$, e	617 m	
$w_{max} := 0,375 \text{ mm}$		Reference Design Basis

 $h_{cr} := 0, 5 \cdot h$

k := 0,65

$$k_{_{C}} := 0$$
, 4

$$A_{s,min,cr} \coloneqq \frac{k_c \cdot k \cdot f_{ctm} \cdot \frac{h}{2}}{\sigma_s} = 17,2693 \frac{\text{cm}^2}{\text{m}}$$
$$A_{s,min,1} \coloneqq \max\left(\left[0,26 \cdot \frac{f_{ctm}}{f_{yk}} \cdot d \ 0,0013 \cdot d \right] \right] = 12,1773 \frac{\text{cm}^2}{\text{m}}$$
NS EN 1992-1-1 NA 9.2.1.1

$$\phi_{s} := \phi_{sp} \cdot \left(\frac{f_{ct,eff}}{2,9 \text{ MPa}}\right) \cdot \frac{k_{c} \cdot h_{cr}}{2 \cdot (h-d)} = 35,32 \text{ mm}$$
 NS EN 1992-1-1 (7.6N)

$$A_{s} := \frac{\frac{\mathbf{n} \cdot (20 \text{ mm})^{2}}{4}}{150 \text{ mm}} = 20,944 \frac{\text{cm}^{2}}{\text{m}}$$

$$\frac{\max\left(\left[\begin{array}{c}A_{s,\min,cr} & A_{s,\min,1}\end{array}\right]\right)}{A_{s}} = 0,8245 \qquad \qquad \text{Ok}$$

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

16.3.2 Pile caps

Punching shear cannot occur with the piles in compression as loads will transfer through a strut and tie mechanism.

It can however be an issue if the pile is in tension. Notice that the pile tensions will probably disappear if we consider the weight of the concrete (not included in the strut and tie model). However, we choose to include its effect.

PUNCHING RESISTANCE TO CL. 6.2.2.5 EN 1994-2 AND TO CL. 6.4.4 NS-EN 1992-2

Reference	e documen	ts					
NS-EN 1992-	1-1:2004 Desig	gn of conc	rete structures - Part 1-	1: General	rules and ru	les for buil	dings
Input							
Section Ø a b u0 u1 β h r fck Yc	Rectangui 0, 0, 1, 3, 1, 0,2 0,0	lar - m 30 m 30 m 20 m 27 m 50 50 50 50 50 50 50 50 50 50 50 50 50	Fig. 1: u1	F _{ed,u0}		33 kN 33 kN	UPPER/LOWER REINFORCEMENT LAYER X-dir Ø 20 mm spa 150 mm Y-dir Ø 20 mm spa 150 mm PUNCHING SHEAR REINFORCEMENT Ø 0 mm spa sr 248 mm Nr. Links / 0 Total number of shear links
Output							total
Ed (u0) Rd,max Ed (u1) Rd,c (u1) Rd,cs (u1)	0,25 7,38 0,092 0,771 0,58	MPa MPa MPa MPa MPa	OK OK NO NEEL)			
Calculatio	ons						
N(u0) N(u1)	33 33	kN kN	ρx ρy		1,20E-02 1,35E-02 1,27E-02		
dx dy d	0,175 0,155 0,165	m m m	ې k vmi vRd vRd	n ,c ,max	2,000 0,664 0,771 7,380	- MPa MPa MPa	
uout	0,389	m	fyw fyw α vRd	d d,ef ,cs	400 291 90 0,578	MPa MPa ♀ MPa	

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

Figure 16-5: Strut and tie model for downward forces and punching shear for uplift forces.

16.4 TRANSITION SLAB AND CORBEL

Standard design according to SVV brudetaljer for footbridges.

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

17 VEDLEGG 8 - REACTION FOR GEO DESIGN

In the new revised layout (REV 4) the axis 2 abutment is the longitudinal fix point, while the axis 1 is free.

lager	type	Fz	Fx (long)	Ev (transv)	Zone
	type			i y (transty	20110
-	-	kN	kN	kN	-
Lager 4	Free	607	±12.6*	±12.6*	North-west
Lager 3	Fix	612	195 / -107	296 / -276	South-west
Lager 2	Unidir X	603	±12.6*	307 / -298	South-east
Lager 1	Free	604	±12.6*	±12.6*	North-east

ULS LOADS ENVELOPE

* Values due to friction at bearing, friction need to be added to the overall load acting on the foundation.

Kammen gang- og sykkelbru Beregningsrapport 21130-R02

Revisjon	Dato	Utf.	Kontr.	Godkj.
04	30-01-2024	FA	FI	BO

SLS LOADS ENVELOPE

Lager	type	Fz	Fx (long.)	Fy (transv)	Zone
-	-	kN	kN	kN	-
Lager 4	Free	451	±8.4*	±8.4*	North-west
Lager 3	Fix	453	136/ -79	187 / -173	South-west
Lager 2	Unidir X	448	±8.4*	194 / -187	South-east
Lager 1	Free	448	±8.4*	±8.4*	North-east

* Values due to friction at bearing, friction need to be added to the overall load acting on the foundation.

REFERENCE SCHEME FOR LOAD APPLICATION TO BE CONSIDERED IN THE FOUNDATION DESIGN:

